28 research outputs found

    Hypertension, aging, and myocardial synthesis of heat-shock protein 72

    No full text
    We determined the temperature-induced synthesis of the 72-kD heat-shock protein (hsp72) in hearts of normotensive and spontaneously hypertensive rats (SHR) subjected to whole-body hyperthermia (42.0±0.5°C for 15 minutes). The animals were studied at three different ages: young (2 months), adult (6 months), and old (18 months). The hsp72 was determined by Western blot analysis using a monoclonal antibody. The results were calculated densitometrically as a percentage of a commercial standard. Young SHR responded to hyperthermic stress with increased synthesis of hsp72 compared with age-matched normotensive rats (298.8±70.0% versus 88.3±25.5%). This trend was maintained in adult rats (118.1±31.0% versus 54.8±21.3%) but not in old rats (65.3±29.4% versus 43.6±15.1%). Aging caused a reduction of hsp72 expression in response to hyperthermic stress in both SHR (4.6-fold) and normotensive rats (twofold). These data show that hearts of young and adult SHR respond to heat shock with enhanced synthesis of hsp72. This abnormal response, attenuated by aging, is independent of the presence and degree of hypertension or hypertrophy and is potentially linked to the genetic determination of the disease

    Heat shock protein changes in hibernation: A similarity with heart failure?

    No full text
    Myocardial hibernation is an adaptive phenomenon occurring during ischaemia. Patients with hibernating myocardium often have a history of an acute ischaemic insult, followed by prolonged hypoperfusion and symptoms of congestive heart failure (CHF), which is a complex syndrome involving several adaptational mechanisms. We tested the hypothesis that these two conditions evoke the myocardial expression of heat shock protein 72 (hsp72) as an adaptive response at the molecular level. Short-term acute hibernation was induced in isolated and perfused rat hearts subjected to 8 min total ischaemia followed by 292 min low-flow ischaemia (coronary now: 1.0 ml/min), followed by 60 min of reperfusion. Total ischaemia caused quiescience. Subsequent low-now resulted in a temporal early increase of lactate release, no re-establishment of developed pressure, no increase in diastolic pressure. Reperfusion resulted in 85.7 ± 7.2% recovery of developed pressure, a small washout of lactate and CPK, no contracture, confirming that viability was maintained despite prolonged hypoperfusion. This sequence of events was linked to an increase in hsp72 content in the right (from 18.1 ± 3.8% to 34.6 ± 2.3%, P < 0.01) and left (from 19.7 ± 2.6% to 37.6 ± 3.3%, P < 0.01) ventricles. Three-hundred min of low-now perfusion of the rat heart in absence of the short period of total ischaemia caused irreversible damage and failed to induced hsp72. CHF was induced in rats by intraperitoneal administration of monocrotaline. As a result, right ventricular weight increased from 171.3 ± 7.2 to 412.3 ± 18.7 mg, P < 0.001, peripheral and pleural effusion were evident and measurable, plasma arterial natriuretic peptide increased from 15.2 ± 1.9 to 123.5 ± 5.4 pg/ml, P < 0.001, confirming the occurrence of the syndrome of CHF. This was concomitant with significant expression of hsp72, more evident in the right (from 5.0 ± 0.9% to 39.4 ± 1.6%, P < 0.001) than in the left (from 3.5 ± 0.6% to 13.0 ± 1.2%, P < 0.001) ventricle. These data suggest that an adaptational process occurs at myocardial level during either hibernation or CHF. The expression of hsp72 could be viewed as a stereotyped adaptational reaction of the cardiac cell to stress conditions

    Shear stress modulates the expression of thrombospondin-1 and CD36 in endothelial cells in vitro and during shear stress-induced angiogenesis in vivo

    No full text
    Binding of thrombospondin-1 (TSP-1) to the CD36 receptor inhibits angiogenesis and induces apoptosis in endothelial cells (EC). Conversely, matrix-bound TSP-1 supports vessel formation. In this study we analyzed the shear stress-dependent expression of TSP-1 and CD36 in endothelial cells in vitro and in vivo to reveal its putative role in the blood flow-induced remodelling of vascular networks. Shear stress was applied to EC using a cone-and-plate apparatus and gene expression was analyzed by RT-PCR, Northern and Western blot. Angiogenesis in skeletal muscles of prazosin-fed (50 mg/l drinking water; 4 d) mice was assessed by measuring capillary-to-fiber (C/F) ratios. Protein expression in whole muscle homogenates (WMH) or BS-1 lectin-enriched EC fractions (ECF) was analyzed by Western blot. Shear stress downregulated TSP-1 and CD36 expression in vitro in a force- and time-dependent manner sustained for at least 72 h and reversible by restoration of no-flow conditions. In vivo, shear stress-driven increase of C/F in prazosin-fed mice was associated with reduced expression of TSP-1 and CD36 in ECF, while TSP-1 expression in WMH was increased. Down-regulation of endothelial TSP-1/CD36 by shear stress suggests a mechanism for inhibition of apoptosis in perfused vessels and pruning in the absence of flow. The increase of extra-endothelial (e.g. matrix-bound) TSP-1 could support a splitting type of vessel growth
    corecore