2,981 research outputs found

    Cosmological Perturbations in Renormalization Group Derived Cosmologies

    Get PDF
    A linear cosmological perturbation theory of an almost homogeneous and isotropic perfect fluid Universe with dynamically evolving Newton constant GG and cosmological constant Λ\Lambda is presented. A gauge-invariant formalism is developed by means of the covariant approach, and the acoustic propagation equations governing the evolution of the comoving fractional spatial gradients of the matter density, GG, and Λ\Lambda are thus obtained. Explicit solutions are discussed in cosmologies where both GG and Λ\Lambda vary according to renormalization group equations in the vicinity of a fixed point.Comment: 22 pages, revtex, subeqn.sty, to appear on IJMP

    Quantum Gravity effects near the null black hole singularity

    Get PDF
    The structure of the Cauchy Horizon singularity of a black hole formed in a generic collapse is studied by means of a renormalization group equation for quantum gravity. It is shown that during the early evolution of the Cauchy Horizon the increase of the mass function is damped when quantum fluctuations of the metric are taken into account.Comment: 15 Pages, one figure. Minor changes in the presentation, to appear on Phys.Rev.

    Noether symmetry approach to scalar-field-dominated cosmology with dynamically evolving G and Lambda

    Full text link
    This paper studies the cosmological equations for a scalar field Phi in the framework of a quantum gravity modified Einstein--Hilbert Lagrangian where G and Lambda are dynamical variables. It is possible to show that there exists a Noether symmetry for the point Lagrangian describing this scheme in a FRW universe. Our main result is that the Noether Symmetry Approach fixes both Lambda = Lambda(G) and the potential V = V(Phi) of the scalar field. The method does not lead, however, to easily solvable equations, by virtue of the higher dimensionality of the reduced configuration space involved, the additional variable being the running Newton coupling.Comment: 10 pages, Revtex

    Towards Nonperturbative Renormalizability of Quantum Einstein Gravity

    Get PDF
    We summarize recent evidence supporting the conjecture that four-dimensional Quantum Einstein Gravity (QEG) is nonperturbatively renormalizable along the lines of Weinberg's asymptotic safety scenario. This would mean that QEG is mathematically consistent and predictive even at arbitrarily small length scales below the Planck length. For a truncated version of the exact flow equation of the effective average action we establish the existence of a non-Gaussian renormalization group fixed point which is suitable for the construction of a nonperturbative infinite cutoff-limit. The cosmological implications of this fixed point are discussed, and it is argued that QEG might solve the horizon and flatness problem of standard cosmology without an inflationary period.Comment: 10 pages, latex, 1 figur

    The role of Background Independence for Asymptotic Safety in Quantum Einstein Gravity

    Full text link
    We discuss various basic conceptual issues related to coarse graining flows in quantum gravity. In particular the requirement of background independence is shown to lead to renormalization group (RG) flows which are significantly different from their analogs on a rigid background spacetime. The importance of these findings for the asymptotic safety approach to Quantum Einstein Gravity (QEG) is demonstrated in a simplified setting where only the conformal factor is quantized. We identify background independence as a (the ?) key prerequisite for the existence of a non-Gaussian RG fixed point and the renormalizability of QEG.Comment: 2 figures. Talk given by M.R. at the WE-Heraeus-Seminar "Quantum Gravity: Challenges and Perspectives", Bad Honnef, April 14-16, 2008; to appear in General Relativity and Gravitatio

    An effective action for asymptotically safe gravity

    Full text link
    Asymptotically safe theories of gravitation have received great attention in recent times. In this framework an effective action embodying the basic features of the renormalized flow around the non-gaussian fixed point is derived and its implications for the early universe are discussed. In particular, a "landscape" of a countably infinite number of cosmological inflationary solutions characterized by an unstable de Sitter phase lasting for a large enough number of e-folds is found.Comment: 5 pages, to appear as a Rapid Communication in Physical Review

    A Class of Renormalization Group Invariant Scalar Field Cosmologies

    Full text link
    We present a class of scalar field cosmologies with a dynamically evolving Newton parameter GG and cosmological term Λ\Lambda. In particular, we discuss a class of solutions which are consistent with a renormalization group scaling for GG and Λ\Lambda near a fixed point. Moreover, we propose a modified action for gravity which includes the effective running of GG and Λ\Lambda near the fixed point. A proper understanding of the associated variational problem is obtained upon considering the four-dimensional gradient of the Newton parameter.Comment: 10 pages, RevTex4, no figures, to appear on GR

    Running Gauge Coupling in Asymptotically Safe Quantum Gravity

    Full text link
    We investigate the non-perturbative renormalization group behavior of the gauge coupling constant using a truncated form of the functional flow equation for the effective average action of the Yang-Mills-gravity system. We find a non-zero quantum gravity correction to the standard Yang-Mills beta function which has the same sign as the gauge boson contribution. Our results fit into the picture according to which Quantum Einstein Gravity (QEG) is asymptotically safe, with a vanishing gauge coupling constant at the non-trivial fixed point.Comment: 27 page
    • …
    corecore