19 research outputs found

    Surgery for idiopathic epiretinal membrane

    Get PDF
    BACKGROUND: Epiretinal membrane is an abnormal sheet of avascular fibrocellular tissue that develops on the inner surface of the retina. Epiretinal membrane can cause impairment of sight as a consequence of progressive distortion of retinal architecture. OBJECTIVES: To determine the effects of surgery compared to no intervention for epiretinal membrane. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE Ovid, Embase Ovid, ISRCTN registry, US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov, and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP). There were no restrictions to language or year of publication. The databases were last searched on 20 May 2020. SELECTION CRITERIA: We included randomised controlled trials (RCTs) assessing surgical removal of idiopathic epiretinal membrane compared to placebo, no treatment or sham treatment. Paired or within-person studies were included, as well as those where both eyes of a single participant were treated. DATA COLLECTION AND ANALYSIS: We used standard methods expected by Cochrane, and assessed certainty using the GRADE system. We considered the following five outcome measures: mean change in best corrected visual acuity (BCVA) in the study eye between baseline (before randomisation), 6 months and 12 months later; proportion of people with a gain of 0.3 logMAR or more of visual acuity in the study eye as measured by a logMAR chart at a starting distance of 4 m at 6 months and 12 months after randomisation; proportion of people with a loss of 0.3 logMAR or more of visual acuity in the study eye as measured by a logMAR chart at a starting distance of 4 m at 6 months and 12 months after randomisation; mean quality of life score at 6 months and 12 months following surgery, measured using a validated questionnaire; and any harm identified during follow-up. MAIN RESULTS: We included one study in the review. This was a RCT including 53 eyes of 53 participants with mild symptomatic epiretinal membrane and BCVA of 65 or more Early Treatment Diabetic Retinopathy Study (ETDRS) letters. Participants were randomly allocated to immediate surgery or to watchful waiting with deferred surgery if indicated by evidence of disease progression. The study was limited by imprecision owing to the small number of participants and was at some risk of bias owing to inconsistencies in the time points for outcome assessment and in the management of lens opacity. At 12 months, the visual acuity in the immediate surgery group was higher by a mean of 2.1 (95% confidence interval (CI) -2.0 to 6.2 ETDRS letters; 53 participants; low-certainty evidence) than the watchful waiting/deferred surgery group. The evidence of the effect of immediate surgery on gains of 0.3 logMAR or more of visual acuity is very uncertain (risk ratio (RR) 0.55, 95% CI 0.06 to 4.93; 53 participants; very low-certainty evidence). At 12 months, no participant in either group sustained a loss of 0.3 logMAR or more of visual acuity (53 participants; low-certainty evidence). The included study did not measure quality of life. At 12 months, no serious adverse event was identified in any participant. One participant developed chronic minimal cystoid macular oedema following immediate surgery (53 participants; low-certainty evidence). AUTHORS' CONCLUSIONS: We found no RCT that directly investigated the effect of surgery compared to no intervention. For severe disabling epiretinal membrane, the lack of a RCT comparing surgery to no intervention may reflect evidence from non-randomised studies in favour of surgery; a RCT may be considered unnecessary and ethically unacceptable because a superior effect of surgery is widely accepted. For mild symptomatic epiretinal membrane, however, the value of surgery is uncertain. Low-certainty evidence from this review suggests that watchful waiting or deferred surgery may offer outcomes as favourable as immediate surgery. However, this finding needs to be confirmed in further RCTs with appropriate statistical power, masking of treatment allocation, consistent management of cataract, and measurement of outcomes including patient-reported quality of life over a more extended time frame

    Surgery for idiopathic epiretinal membrane

    No full text
    This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: To determine the effects of surgery compared to no intervention for epiretinal membrane

    Obesity, inflammation and brachial artery flow-mediated dilatation: Therapeutic targets in patients with microvascular angina (Cardiac Syndrome X)

    No full text
    Background The pathophysiology of microvascular angina (cardiac syndrome X, CSX), (effort-induced angina, a positive response to exercise stress testing and angiographically normal coronary arteries) has not been fully elucidated. Various pathogenic mechanisms have been proposed, amongst which coronary microvascular dysfunction features prominently. Management of patients with microvascular angina is often challenging as a substantial number of patients does not respond to conventional anti-anginal therapy. In this study, we sought to assess the association between brachial artery FMD, high-sensitive C-reactive protein (hs-CRP) and cardiovascular risk factors including obesity in patients with cardiac syndrome X. Methods and results Thirty-four consecutive CSX patients (29 female, mean age 60 ± 9 years) were recruited from a specialised CSX clinic. Twelve asymptomatic subjects (10 female, mean age 51 ± 12 years) with comparable cardiovascular risk factor profile served as controls. All participants underwent standardized computer-assisted FMD measurements and assessment of hs-CRP concentrations at study entry. Body mass index (BMI), used as a general measure of obesity was calculated as weight (kilograms) divided by height (meters squared). Compared to controls, CSX patients had significantly higher hs-CRP concentrations (p = 0.003) and impaired FMD (p < 0.01). Moreover, among the CSX patients, a correlation between FMD and hs-CRP (r = −0.66, p < 0.01), FMD and BMI (r = 0.377, p = 0.028), and hs-CRP and BMI (r = −0.372, p = 0.030) was found. Conclusion Impaired brachial artery FMD is significantly associated with elevated hs-CRP concentrations and BMI in patients with CSX. The results support the concept that low-grade inflammation and obesity may promote vascular dysfunction in these patients representing therapeutic targets for future research investigations

    A semi-automated technique for labeling and counting of apoptosing retinal cells

    Get PDF
    Background Retinal ganglion cell (RGC) loss is one of the earliest and most important cellular changes in glaucoma. The DARC (Detection of Apoptosing Retinal Cells) technology enables in vivo real-time non-invasive imaging of single apoptosing retinal cells in animal models of glaucoma and Alzheimer’s disease. To date, apoptosing RGCs imaged using DARC have been counted manually. This is time-consuming, labour-intensive, vulnerable to bias, and has considerable inter- and intra-operator variability. Results A semi-automated algorithm was developed which enabled automated identification of apoptosing RGCs labeled with fluorescent Annexin-5 on DARC images. Automated analysis included a pre-processing stage involving local-luminance and local-contrast “gain control”, a “blob analysis” step to differentiate between cells, vessels and noise, and a method to exclude non-cell structures using specific combined ‘size’ and ‘aspect’ ratio criteria. Apoptosing retinal cells were counted by 3 masked operators, generating ‘Gold-standard’ mean manual cell counts, and were also counted using the newly developed automated algorithm. Comparison between automated cell counts and the mean manual cell counts on 66 DARC images showed significant correlation between the two methods (Pearson’s correlation coefficient 0.978 (p < 0.001), R Squared = 0.956. The Intraclass correlation coefficient was 0.986 (95% CI 0.977-0.991, p < 0.001), and Cronbach’s alpha measure of consistency = 0.986, confirming excellent correlation and consistency. No significant difference (p = 0.922, 95% CI: −5.53 to 6.10) was detected between the cell counts of the two methods. Conclusions The novel automated algorithm enabled accurate quantification of apoptosing RGCs that is highly comparable to manual counting, and appears to minimise operator-bias, whilst being both fast and reproducible. This may prove to be a valuable method of quantifying apoptosing retinal cells, with particular relevance to translation in the clinic, where a Phase I clinical trial of DARC in glaucoma patients is due to start shortly

    Non-amyloidogenic effects of alpha 2 adrenergic agonists: implications for brimonidine-mediated neuroprotection

    Get PDF
    The amyloid beta (Aβ) pathway is strongly implicated in neurodegenerative conditions such as Alzheimer’s disease and more recently, glaucoma. Here, we identify the α2 adrenergic receptor agonists (α2ARA) used to lower intraocular pressure can prevent retinal ganglion cell (RGC) death via the non-amyloidogenic Aβ-pathway. Neuroprotective effects were confirmed in vivo and in vitro in different glaucoma-related models using α2ARAs brimonidine (BMD), clonidine (Clo) and dexmedetomidine. α2ARA treatment significantly reduced RGC apoptosis in experimental-glaucoma models by 97.7% and 92.8% (BMD, P<0.01) and 98% and 92.3% (Clo, P<0.01)) at 3 and 8 weeks, respectively. A reduction was seen in an experimental Aβ-induced neurotoxicity model (67% BMD and 88.6% Clo, both P<0.01, respectively), and in vitro, where α2ARAs significantly (P<0.05) prevented cell death, under both hypoxic (CoCl2) and stress (UV) conditions. In experimental-glaucoma, BMD induced ninefold and 25-fold and 36-fold and fourfold reductions in Aβ and amyloid precursor protein (APP) levels at 3 and 8 weeks, respectively, in the RGC layer, with similar results with Clo, and in vitro with all three α2ARAs. BMD significantly increased soluble APPα (sAPPα) levels at 3 and 8 weeks (2.1 and 1.6-fold) in vivo and in vitro with the CoCl2 and UV-light insults. Furthermore, treatment of UV-insulted cells with an sAPPα antibody significantly reduced cell viability compared with BMD-treated control (52%), co-treatment (33%) and untreated control (27%). Finally, we show that α2ARAs modulate levels of laminin and MMP-9 in RGCs, potentially linked to changes in Aβ through APP processing. Together, these results provide new evidence that α2ARAs are neuroprotective through their effects on the Aβ pathway and sAPPα, which to our knowledge, is the first description. Studies have identified the need for α-secretase activators and sAPPα-mimetics in neurodegeneration; α2ARAs, already clinically available, present a promising therapy, with applications not only to reducing RGC death in glaucoma but also other neurodegenerative processes involving Aβ
    corecore