7,841 research outputs found

    Unzipping DNA by force: thermodynamics and finite size behaviour

    Full text link
    We discuss the thermodynamic behaviour near the force induced unzipping transition of a double stranded DNA in two different ensembles. The Y-fork is identified as the coexisting phases in the fixed distance ensemble. From finite size scaling of thermodynamic quantities like the extensibility, the length of the unzipped segment of a Y-fork, the phase diagram can be recovered. We suggest that such procedures could be used to obtain the thermodynamic phase diagram from experiments on finite length DNA.Comment: 10 pages, accepted for publication in special issue of Journal of Physics: Condensed Matte

    Helicase activity on DNA as a propagating front

    Get PDF
    We develop a propagating front analysis, in terms of a local probability of zipping, for the helicase activity of opening up a double stranded DNA (dsDNA). In a fixed-distance ensemble (conjugate to the fixed-force ensemble) the front separates the zipped and unzipped phases of a dsDNA and a drive acts locally around the front. Bounds from variational analysis and numerical estimates for the speed of a helicase are obtained. Different types of helicase behaviours can be distinguished by the nature of the drive.Comment: 5 pages, 5 eps figures; replaced by the published versio

    DNA sequence from the unzipping force? : one mutation problem

    Get PDF
    The possibility of detecting mutations in a DNA from force measurements (as a first step towards sequence analysis) is discussed theoretically based on exact calculations. The force signal is associated with the domain wall separating the zipped from the unzipped regions. We propose a comparison method (``differential force microscope'') to detect mutations. Two lattice models are treated as specific examples.Comment: 11 pages, 4 figures. Revised version with minor changes. Paragraph with discussion on experiments added. Accepted for publication in J. Phys. A as a Letter to the Edito

    Interfacial instability and DNA fork reversal by repair proteins

    Get PDF
    A repair protein like RecG moves the stalled replication fork in the direction from the zipped to the unzipped state of DNA. It is proposed here that a softening of the zipped-unzipped interface at the fork results in the front propagating towards the unzipped side. In this scenario, an ordinary helicase destabilizes the zipped state locally near the interface and the fork propagates towards the zipped side. The softening of the interface can be produced by the aromatic interaction, predicted from crystal structure, between RecG and the nascent broken base pairs at the Y-fork. A numerical analysis of the model also reveals the possibility of a stop and go type motion.Comment: 7 pages, revtex, 5 eps figures; v2:shorter title, 2 additional schematic figures in introductio

    Entropy and perpetual computers

    Get PDF
    A definition of entropy via the Kolmogorov algorithmic complexity is discussed. As examples, we show how the meanfield theory for the Ising model, and the entropy of a perfect gas can be recovered. The connection with computations are pointed out, by paraphrasing the laws of thermodynamics for computers. Also discussed is an approach that may be adopted to develop statistical mechanics using the algorithmic point of view.Comment: Based on Chanchal Majumdar memorial lectures given in Kolkata. 9 pages, 3 eps figures. For publication in "Physics Teacher"; v2. Sec 3 fragmented into smaller subsection

    Unzipping DNA - towards the first step of replication

    Full text link
    The opening of the Y-fork - the first step of DNA replication - is shown to be a critical phenomenon under an external force at one of its ends. From the results of an equivalent delocalization in a non-hermitian quantum-mechanics problem we show the different scaling behavior of unzipping and melting. The resultant long-range critical features within the unzipped part of Y might play a role in the highly correlated biochemical functions during replication.Comment: 4 pages, revtex, 2 eps figure

    Manipulating a single adsorbed DNA for a critical endpoint

    Get PDF
    We show the existence of a critical endpoint in the phase diagram of unzipping of an adsorbed double-stranded (ds) polymer like DNA. The competition of base pairing, adsorption and stretching by an external force leads to the critical end point. From exact results, the location of the critical end point is determined and its classical nature established.Comment: 6 pages, 5 figures, Published versio

    Critical Phenomena: An Introduction from a modern perspective

    Get PDF
    Our aim in this set of lectures is to give an introduction to critical phenomena that emphasizes the emergence of and the role played by diverging length-scales. It is now accepted that renormalization group gives the basic understanding of these phenomena and so, instead of following the traditional historical trail, we try to develop the subject in a way that emphasizes the length-scale based approach.Comment: Revtex, 26 pages, 2 figures. Lectures given at the SERC School on "Field theoretic methods in Condensed matter physics", held at MRI, Allahabad, Indi
    • …
    corecore