3,333 research outputs found

    Ionization and charge migration through strong internal fields in clusters exposed to intense X-ray pulses

    Full text link
    A general scenario for electronic charge migration in finite samples illuminated by an intense laser pulse is given. Microscopic calculations for neon clusters under strong short pulses as produced by X-ray free-electron laser sources confirm this scenario and point to the prominent role of field ionization by strong internal fields. The latter leads to the fast formation of a core-shell system with an almost static core of screened ions while the outer shell explodes. Substituting the shell ions with a different material such as helium as a sacrificial layer leads to a substantial improvement of the diffraction image for the embedded cluster thus reducing the consequences of radiation damage for coherent diffractive imaging.Comment: 5 pages, 4 figure

    Harmonic Generation from Laser-Irradiated Clusters

    Full text link
    The harmonic emission from cluster nanoplasmas subject to short, intense infrared laser pulses is analyzed by means of particle-in-cell simulations. A pronounced resonant enhancement of the low-order harmonic yields is found when the Mie plasma frequency of the ionizing and expanding cluster resonates with the respective harmonic frequency. We show that a strong, nonlinear resonant coupling of the cluster electrons with the laser field inhibits coherent electron motion, suppressing the emitted radiation and restricting the spectrum to only low-order harmonics. A pump-probe scheme is suggested to monitor the ionization dynamics of the expanding clusters.Comment: 4 pages, ReVTeX

    The Determination of Nuclear Level Densities from Experimental Information -

    Get PDF
    A novel Information Theory based method for determining the density of states from prior information is presented. The energy dependence of the density of states is determined from the observed number of states per energy interval and model calculations suggest that the method is sufficiently reliable to calculate the thermal properties of nuclei over a reasonable temperature range.Comment: 7 pages + 6 eps figures, REVTEX 3.

    Bethe-Peierls Approximation for the 2D Random Ising Model

    Full text link
    The partition function of the 2d Ising model with random nearest neighbor coupling is expressed in the dual lattice made of square plaquettes. The dual model is solved in the the mean field and in different types of Bethe-Peierls approximations, using the replica method.Comment: Plane TeX file, 21 pages, 5 figures available under request to [email protected]

    Interference effects in the Coulomb dissociation of 15,17,19C

    Full text link
    In this work the semiclassical model of pure Coulomb excitation was applied to the breakup of 15,17,19C. The ground state wave functions were calculated in the particle-rotor model including core excitation. The importance of interference terms in the dipole strength arising after including core degrees of freedom is analyzed for each isotope. It is shown that Coulomb interference effects are important for the case of 17C.Comment: 17 pages, 5 figures accepted to Physical Review

    The Dynamics of the One-Dimensional Delta-Function Bose Gas

    Full text link
    We give a method to solve the time-dependent Schroedinger equation for a system of one-dimensional bosons interacting via a repulsive delta function potential. The method uses the ideas of Bethe Ansatz but does not use the spectral theory of the associated Hamiltonian

    A Procedure to Calibrate a Multi-Modular Telescope

    Full text link
    A procedure has been developed for the charge, mass and energy calibration of ions produced in nuclear heavy ion reactions. The charge and mass identification are based on a Δ\DeltaE-E technique. A computer code determines the conversion from ADC channels into energy values, atomic number and mass of the detected fragments by comparing with energy loss calculations through a minimization routine. The procedure does not need prior measurements with beams of known energy and charge. An application of this technique to the calibration of the MULTICS apparatus is described.Comment: 9 pages, Tex file, 3 postscript figures available upon request from [email protected]; to appear in Nucl. Inst. Met

    Ultrafast effective multi-level atom method for primordial hydrogen recombination

    Get PDF
    Cosmological hydrogen recombination has recently been the subject of renewed attention because of its importance for predicting the power spectrum of cosmic microwave background anisotropies. It has become clear that it is necessary to account for a large number n >~ 100 of energy shells of the hydrogen atom, separately following the angular momentum substates in order to obtain sufficiently accurate recombination histories. However, the multi-level atom codes that follow the populations of all these levels are computationally expensive, limiting recent analyses to only a few points in parameter space. In this paper, we present a new method for solving the multi-level atom recombination problem, which splits the problem into a computationally expensive atomic physics component that is independent of the cosmology, and an ultrafast cosmological evolution component. The atomic physics component follows the network of bound-bound and bound-free transitions among excited states and computes the resulting effective transition rates for the small set of "interface" states radiatively connected to the ground state. The cosmological evolution component only follows the populations of the interface states. By pre-tabulating the effective rates, we can reduce the recurring cost of multi-level atom calculations by more than 5 orders of magnitude. The resulting code is fast enough for inclusion in Markov Chain Monte Carlo parameter estimation algorithms. It does not yet include the radiative transfer or high-n two-photon processes considered in some recent papers. Further work on analytic treatments for these effects will be required in order to produce a recombination code usable for Planck data analysis.Comment: Version accepted by Phys. Rev. D. Proof of equivalence of effective and standard MLA methods moved to the main text. Some rewording

    Collisionless energy absorption in the short-pulse intense laser-cluster interaction

    Get PDF
    In a previous Letter [Phys. Rev. Lett. 96, 123401 (2006)] we have shown by means of three-dimensional particle-in-cell simulations and a simple rigid-sphere model that nonlinear resonance absorption is the dominant collisionless absorption mechanism in the intense, short-pulse laser cluster interaction. In this paper we present a more detailed account of the matter. In particular we show that the absorption efficiency is almost independent of the laser polarization. In the rigid-sphere model, the absorbed energy increases by many orders of magnitude at a certain threshold laser intensity. The particle-in-cell results display maximum fractional absorption around the same intensity. We calculate the threshold intensity and show that it is underestimated by the common over-barrier ionization estimate.Comment: 12 pages, 13 figures, RevTeX

    Cooper pairs as resonances

    Full text link
    Using the Bethe-Salpeter (BS) equation, Cooper pairing can be generalized to include contributions from holes as well as particles from the ground state of either an ideal Fermi gas (IFG) or of a BCS many-fermion state. The BCS model interfermion interaction is employed throughout. In contrast to the better-known original Cooper pair problem for either two particles or two holes, the generalized Cooper equation in the IFG case has no real-energy solutions. Rather, it possesses two complex-conjugate solutions with purely imaginary energies. This implies that the IFG ground state is unstable when an attractive interaction is switched on. However, solving the BS equation for the BCS ground state reveals two types of {\it real} solutions: one describing moving (i.e., having nonzero total, or center-of-mass, momenta) Cooper pairs as resonances (or bound composite particles with a {\it finite} lifetime), and another exhibiting superconducting collective excitations sometimes known as Anderson-Bogoliubov-Higgs (ABH) modes. A Bose-Einstein-condensation-based picture of superconductivity is addressed.Comment: 5 pages in PS, including 3 figures. In press Physica
    • 

    corecore