16,181 research outputs found
Selection bias in dynamically-measured super-massive black hole samples: consequences for pulsar timing arrays
Supermassive black hole -- host galaxy relations are key to the computation
of the expected gravitational wave background (GWB) in the pulsar timing array
(PTA) frequency band. It has been recently pointed out that standard relations
adopted in GWB computations are in fact biased-high. We show that when this
selection bias is taken into account, the expected GWB in the PTA band is a
factor of about three smaller than previously estimated. Compared to other
scaling relations recently published in the literature, the median amplitude of
the signal at yr drops from to
. Although this solves any potential tension between
theoretical predictions and recent PTA limits without invoking other dynamical
effects (such as stalling, eccentricity or strong coupling with the galactic
environment), it also makes the GWB detection more challenging.Comment: 6 pages 4 figures, submitted to MNRAS letter
A Statistical Semi-Empirical Model: Satellite galaxies in Groups and Clusters
We present STEEL a STatistical sEmi-Empirical modeL designed to probe the
distribution of satellite galaxies in groups and clusters. Our fast statistical
methodology relies on tracing the abundances of central and satellite haloes
via their mass functions at all cosmic epochs with virtually no limitation on
cosmic volume and mass resolution. From mean halo accretion histories and
subhalo mass functions the satellite mass function is progressively built in
time via abundance matching techniques constrained by number densities of
centrals in the local Universe. By enforcing dynamical merging timescales as
predicted by high-resolution N-body simulations, we obtain satellite
distributions as a function of stellar mass and halo mass consistent with
current data. We show that stellar stripping, star formation, and quenching
play all a secondary role in setting the number densities of massive satellites
above . We further show that observed
star formation rates used in our empirical model over predict low-mass
satellites below , whereas, star
formation rates derived from a continuity equation approach yield the correct
abundances similar to previous results for centrals.Comment: 21 pages, 17 Figures. MNRAS, in pres
The inner structure of very massive elliptical galaxies: implications for the inside-out formation mechanism of z~2 galaxies
We analyze a sample of 23 supermassive elliptical galaxies (central velocity
dispersion larger than 330 km s-1), drawn from the SDSS. For each object, we
estimate the dynamical mass from the light profile and central velocity
dispersion, and compare it with the stellar mass derived from stellar
population models. We show that these galaxies are dominated by luminous matter
within the radius for which the velocity dispersion is measured. We find that
the sizes and stellar masses are tightly correlated, with Re ~ M*^{1.1}$,
making the mean density within the de Vaucouleurs radius a steeply declining
function of M*: rho_e ~ M*^{-2.2}. These scalings are easily derived from the
virial theorem if one recalls that this sample has essentially fixed (but
large) sigma_0. In contrast, the mean density within 1 kpc is almost
independent of M*, at a value that is in good agreement with recent studies of
z ~ 2 galaxies. The fact that the mass within 1 kpc has remained approximately
unchanged suggests assembly histories that were dominated by minor mergers --
but we discuss why this is not the unique way to achieve this. Moreover, the
total stellar mass of the objects in our sample is typically a factor of ~ 5
larger than that in the high redshift (z ~ 2) sample, an amount which seems
difficult to achieve. If our galaxies are the evolved objects of the recent
high redshift studies, then we suggest that major mergers were required at z >
1.5, and that minor mergers become the dominant growth mechanism for massive
galaxies at z < 1.5.Comment: 11 pages, 8 figures, accepted in MNRA
The use of aerial- and close-range photogrammetry for the mapping of the Lavini di Marco tracksite (Hettangian, Southern Alps, NE Italy)
(EXCERPT FROM ABSTRACT) Close-range photogrammetry was executed following the procedure proposed by Mallison & Wings (2014). More than seventy 3D models were obtained and interpreted by means of color-coded and contour line images, which allow to improve the ichno- logical knowledge of the tracksite. The 3D models of the best-preserved tracks were used for the osteological reconstruction of the trackmakers’ autopodia, supposing the arthral position of the phalangeal pads. Three indirect methods were used to correlate tracks and their trackmakers: (i) synapomorphy-based approach; (ii) phenetic correlation; (iii) coincidence correlation (see Carrano & Wilson, 2001)
The final map was produced with different level of knowledge due to the distribution of tracks and current state of site preservation. Furthermore, it represents a complete documentation that will be used for future work of enhancement, preservation and valorization of the tracksite.
The ichnotaxonomical review of the quadrupedal trackways led us to emend the diagnosis of Lavinipes cheminii Avanzini et al. (2003) and to assign several other sparse tracks and trackways to L. chemini. The skeletal reconstruction of fore and hind limbs points towards Gongxianosaurus sp. as the most suitable trackmaker of L. cheminii. The herein supposed Laurasian affinity of the Lavini di Marco dinosaur assemblage clashes with the previous hypotheses that always link the Southern Alps sector with the Gondwana mainland
Selection bias in the M_BH-sigma and M_BH-L correlations and its consequences
It is common to estimate black hole abundances by using a measured
correlation between black hole mass and another more easily measured observable
such as the velocity dispersion or luminosity of the surrounding bulge. The
correlation is used to transform the distribution of the observable into an
estimate of the distribution of black hole masses. However, different
observables provide different estimates: the Mbh-sigma relation predicts fewer
massive black holes than does the Mbh-L relation. This is because the sigma-L
relation in black hole samples currently available is inconsistent with that in
the SDSS sample, from which the distributions of L or sigma are based: the
black hole samples have smaller L for a given sigma or have larger sigma for a
given L. This is true whether L is estimated in the optical or in the NIR. If
this is a selection rather than physical effect, then the Mbh-sigma and Mbh-L
relations currently in the literature are also biased from their true values.
We provide a framework for describing the effect of this bias. We then combine
it with a model of the bias to make an estimate of the true intrinsic
relations. While we do not claim to have understood the source of the bias, our
simple model is able to reproduce the observed trends. If we have correctly
modeled the selection effect, then our analysis suggests that the bias in the
relation is likely to be small, whereas the relation is
biased towards predicting more massive black holes for a given luminosity. In
addition, it is likely that the Mbh-L relation is entirely a consequence of
more fundamental relations between Mbh and sigma, and between sigma and L. The
intrinsic relation we find suggests that at fixed luminosity, older galaxies
tend to host more massive black holes.Comment: 12 pages, 7 figures. Accepted by ApJ. We have added a figure showing
that a similar bias is also seen in the K-band. A new appendix describes the
BH samples as well as the fits used in the main tex
- …