58 research outputs found

    Generalized Cheeger-Gromoll Metrics and the Hopf map

    Get PDF
    We show, using two different approaches, that there exists a family of Riemannian metrics on the tangent bundle of a two-sphere, which induces metrics of constant curvature on its unit tangent bundle. In other words, given such a metric on the tangent bundle of a two-sphere, the Hopf map is identified with a Riemannian submersion from the universal covering space of the unit tangent bundle onto the two-sphere. A hyperbolic counterpart dealing with the tangent bundle of a hyperbolic plane is also presented.Comment: 17 pages, Dedicated to Professor Udo Simon on his seventieth birthda

    Convergence of vector bundles with metrics of Sasaki-type

    Full text link
    If a sequence of Riemannian manifolds, XiX_i, converges in the pointed Gromov-Hausdorff sense to a limit space, X∞X_\infty, and if EiE_i are vector bundles over XiX_i endowed with metrics of Sasaki-type with a uniform upper bound on rank, then a subsequence of the EiE_i converges in the pointed Gromov-Hausdorff sense to a metric space, E∞E_\infty. The projection maps πi\pi_i converge to a limit submetry π∞\pi_\infty and the fibers converge to its fibers; the latter may no longer be vector spaces but are homeomorphic to Rk/G\R^k/G, where GG is a closed subgroup of O(k)O(k) ---called the {\em wane group}--- that depends on the basepoint and that is defined using the holonomy groups on the vector bundles. The norms μi=∥⋅∥i\mu_i=\|\cdot\|_i converges to a map μ∞\mu_{\infty} compatible with the re-scaling in Rk/G\R^k/G and the R\R-action on EiE_i converges to an R−\R-action on E∞E_{\infty} compatible with the limiting norm. In the special case when the sequence of vector bundles has a uniform lower bound on holonomy radius (as in a sequence of collapsing flat tori to a circle), the limit fibers are vector spaces. Under the opposite extreme, e.g. when a single compact nn-dimensional manifold is re-scaled to a point, the limit fiber is Rn/H\R^n/H where HH is the closure of the holonomy group of the compact manifold considered. An appropriate notion of parallelism is given to the limiting spaces by considering curves whose length is unchanged under the projection. The class of such curves is invariant under the R\R-action and each such curve preserves norms. The existence of parallel translation along rectifiable curves with arbitrary initial conditions is also exhibited. Uniqueness is not true in general, but a necessary condition is given in terms of the aforementioned wane groups GG.Comment: 44 pages, 1 figure, in V.2 added Theorem E and Section 4 on parallelism in the limit space

    Severe propylthiouracil-induced hepatotoxicity in pregnancy managed successfully by liver transplantation: A case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Propylthiouracil-induced severe hepatotoxicity is a relatively rare occurrence, with very few cases reported in the literature. The management of this complication in pregnancy can be a challenge because of the effects of the various treatment options on the fetus.</p> <p>Case presentation</p> <p>We report a rare case of fulminant hepatic failure in a 36-year-old gravida 2 black woman of African descent that occurred at 17 weeks gestation following propylthiouracil treatment for Graves' disease. Her liver failure was managed by liver transplantation and thyroidectomy. Her pregnancy was continued to term, though with not so favorable early childhood sequelae.</p> <p>Conclusion</p> <p>This case illustrates a very rare complication of treatment with a presumed safe drug during pregnancy followed by adverse neonatal outcomes due to the extensive treatment.</p
    • …
    corecore