321 research outputs found

    Ab initio theory of electron-phonon mediated ultrafast spin relaxation of laser-excited hot electrons in transition-metal ferromagnets

    Get PDF
    We report a computational theoretical investigation of electron spin-flip scattering induced by the electron-phonon interaction in the transition-metal ferromagnets bcc Fe, fcc Co and fcc Ni. The Elliott-Yafet electron-phonon spin-flip scattering is computed from first-principles, employing a generalized spin-flip Eliashberg function as well as ab initio computed phonon dispersions. Aiming at investigating the amount of electron-phonon mediated demagnetization in femtosecond laser-excited ferromagnets, the formalism is extended to treat laser-created thermalized as well as nonequilibrium, nonthermal hot electron distributions. Using the developed formalism we compute the phonon-induced spin lifetimes of hot electrons in Fe, Co, and Ni. The electron-phonon mediated demagnetization rate is evaluated for laser-created thermalized and nonequilibrium electron distributions. Nonthermal distributions are found to lead to a stronger demagnetization rate than hot, thermalized distributions, yet their demagnetizing effect is not enough to explain the experimentally observed demagnetization occurring in the subpicosecond regime.Comment: 14 pages, 8 figures, to appear in PR

    Ab initio investigation of Elliott-Yafet electron-phonon mechanism in laser-induced ultrafast demagnetization

    Full text link
    The spin-flip (SF) Eliashberg function is calculated from first-principles for ferromagnetic Ni to accurately establish the contribution of Elliott-Yafet electron-phonon SF scattering to Ni's femtosecond laser-driven demagnetization. This is used to compute the SF probability and demagnetization rate for laser-created thermalized as well as non-equilibrium electron distributions. Increased SF probabilities are found for thermalized electrons, but the induced demagnetization rate is extremely small. A larger demagnetization rate is obtained for {non-equilibrium} electron distributions, but its contribution is too small to account for femtosecond demagnetization.Comment: 5 pages, 3 figures, to appear in PR

    Stress recovery algorithm for reduced order models of mechanical systems in nonlinear dynamic operative conditions

    Get PDF
    Nonlinear forced response analyses of mechanical systems in the presence of contact interfaces are usually performed in built-in numerical codes on reduced order models (ROM). Most of the cases these derive from complex finite element (FE) models, resulting from the high accuracy the designers require in modeling and meshing the components in commercial FE software. In the technical literature several numerical methods are proposed for the identification of the nonlinear forced response in terms of a kinematic quantity (i.e. displacement, velocity and acceleration) associated either to the master degrees-of-freedom retained in the ROM, or to the slave ones after having expanded the reduced response through the reduction matrix. In fact, the displacement is the quantity usually adopted to monitor the nonlinear response, and to evaluate the effectiveness of a partially loose friction interface in damping vibrations, with respect to a linear case where no friction interfaces exist and no energy dissipation can take place. However, when a ROM is used the engineering quantities directly involved in the mechanical design, i.e. the strains and stresses, cannot be retrieved without a further data processing. Moreover, in the case of a strong nonlinear behavior of the mechanical joints, the distributions of the nonlinear strains and stresses over the structure is likely different than the one obtained as a superposition of linear mode shapes whose definition require a-priori assumptions on the boundary conditions at the contact interface. This means that the mentioned approximation cannot be used to predict the safety margins of a structure working in real (nonlinear) operative conditions. This paper addresses this topic and presents a novel stress recovery algorithm for the identification of the strains and stresses resulting from a nonlinear forced response analysis on a ROM. The algorithm is applied to a bladed disk with friction contacts at the shroud joint, which make the behavior of the blades nonlinear and non-predictable by means of standard linear analyses in commercial FE software

    A BENCHMARK FOR TIP TIMING MEASUREMENT OF FORCED RESPONSE IN ROTATING BLADED DISKS

    Get PDF
    The Blade Tip-Timing is a well known non-contact measurement technique for the identification of the dynamic properties of rotating bladed disks. Even if it is an industrystandard technique its reliability has to be proved for the different operation conditions by comparison with other well stablished measurement techniques. Typically a strain gauges system in conjunction with radio telemetry is used as reference. This paper aims at evaluating the accuracy of a last generation Tip-Timing system on two bladed dummy disks characterized by different geometrical, structural and dynamical properties. Both the disks were tested into a spinning rig where a fixed number of permanent magnets, equally spaced around the casing, excites a synchronous resonance vibration with respect to the rotor speed. The so called beam shutter method was adopted for the Tip-Timing system. Due to the presence of shrouds a particularly set up of the probes was chosen in order to avoid that the probes look radially inward at the blade tips as in the most common configurations. he probes are optical laser sensors pointing at leading and trailing edges locations where the blade experiences the greatest magnitude of displacement. The Blade Tip-Timing measured data are post-processed by two different methods, the Single Degree of Freedom Fit (SDOF) and the Circumferential Fourier Fit (CFF). The amplitude and frequency values at resonance obtained by the Tip-Timing system are compared with those obtained by the strain gauge measurements
    corecore