445 research outputs found
Challenging undue influence?:Rethinking children’s participation in contested child contact
Despite the widespread ratification of the United Nations Convention on the Rights of the Child, children continue to struggle to have their participation rights recognised and supported. This is evident within family law, where despite sometimes progressive and strong legislation, children’s views are often not heard, nor given due weight, when parent-child contact is contested within the courts. This paper explores barriers to children’s participation rights being realised. It uses Scotland as the example, due to its strong legal safeguards and mechanisms that aim to support participation rights. The paper draws on recent empirical research with legal professionals, combined with an analysis of reported case law and relevant literature, to explore the barriers ‘on the ground’ for children’s participation rights. Through our analysis, we offer new ways to conceptualise the notion of influence in children’s participation rights in family actions. We offer the conceptual devices of ‘the influenced child’ and ‘the influential child’ to elucidate how children’s participation rights are restricted
The Evolution of Radio Loud Active Galactic Nuclei as a Function of Black Hole Spin
Recent work on the engines of active galactic nuclei jets suggests their
power depends strongly and perhaps counter-intuitively on black hole spin. We
explore the consequences of this on the radio-loud population of active
galactic nuclei and find that the time evolution of the most powerful radio
galaxies and radio-loud quasars fits into a picture in which black hole spin
varies from retrograde to prograde with respect to the accreting material.
Unlike the current view, according to which jet powers decrease in tandem with
a global downsizing effect, we argue for a drop in jet power resulting directly
from the paucity of retrograde accretion systems at lower redshift caused
by a continuous history of accretion dating back to higher . In addition,
the model provides simple interpretations for the basic spectral features
differentiating radio-loud and radio-quiet objects, such as the presence or
absence of disk reflection, broadened iron lines and signatures of disk winds.
We also briefly describe our models' interpretation of microquasar state
transitions. We highlight our result that the most radio-loud and most
radio-quiet objects both harbor highly spinning black holes but in retrograde
and prograde configurations, respectively.Comment: MNRAS accepte
Time-dependent Stochastic Modeling of Solar Active Region Energy
A time-dependent model for the energy of a flaring solar active region is
presented based on a stochastic jump-transition model (Wheatland and Glukhov
1998; Wheatland 2008; Wheatland 2009). The magnetic free energy of the model
active region varies in time due to a prescribed (deterministic) rate of energy
input and prescribed (random) flare jumps downwards in energy. The model has
been shown to reproduce observed flare statistics, for specific
time-independent choices for the energy input and flare transition rates.
However, many solar active regions exhibit time variation in flare
productivity, as exemplified by NOAA active region AR 11029 (Wheatland 2010).
In this case a time-dependent model is needed. Time variation is incorporated
for two cases: 1. a step change in the rates of flare jumps; and 2. a step
change in the rate of energy supply to the system. Analytic arguments are
presented describing the qualitative behavior of the system in the two cases.
In each case the system adjusts by shifting to a new stationary state over a
relaxation time which is estimated analytically. The new model retains
flare-like event statistics. In each case the frequency-energy distribution is
a power law for flare energies less than a time-dependent rollover set by the
largest energy the system is likely to attain at a given time. For Case 1, the
model exhibits a double exponential waiting-time distribution, corresponding to
flaring at a constant mean rate during two intervals (before and after the step
change), if the average energy of the system is large. For Case 2 the
waiting-time distribution is a simple exponential, again provided the average
energy of the system is large. Monte Carlo simulations of Case~1 are presented
which confirm the analytic estimates. The simulation results provide a
qualitative model for observed flare statistics in active region AR 11029.Comment: 25 pages, 9 figure
Firm dynamics and job creation in the United Kingdom:1998–2013
This article is motivated by a very simple question – ‘what types of firms create the most jobs in the UK economy?’ One popular answer to this question has been High-Growth Firms (HGFs). These firms represent only a small minority – the ‘Vital 6%’ – of the UK business population yet, but have a disproportionate impact on job creation and innovation. We re-visit the discussion launched by the 2009 National Endowment for Science, Technology and the Arts (NESTA) reports, which identified the 6% figure and, using more recent data, confirm the headline conclusion for job creation: a small number of job-creating firms (mostly small firms) are responsible for a significant amount of net job creation in the United Kingdom. Adopting our alternative preferred analytical approach, which involves tracking the growth performance of cohorts of start-ups confirms this conclusion; however, we find an even smaller number of job-creating firms are responsible for a very significant proportion of job creation. We conclude by considering the question – ‘what are the implications for policy choices?’
Improved constraints on the expansion rate of the Universe up to z~1.1 from the spectroscopic evolution of cosmic chronometers
We present new improved constraints on the Hubble parameter H(z) in the
redshift range 0.15 < z < 1.1, obtained from the differential spectroscopic
evolution of early-type galaxies as a function of redshift. We extract a large
sample of early-type galaxies (\sim11000) from several spectroscopic surveys,
spanning almost 8 billion years of cosmic lookback time (0.15 < z < 1.42). We
select the most massive, red elliptical galaxies, passively evolving and
without signature of ongoing star formation. Those galaxies can be used as
standard cosmic chronometers, as firstly proposed by Jimenez & Loeb (2002),
whose differential age evolution as a function of cosmic time directly probes
H(z). We analyze the 4000 {\AA} break (D4000) as a function of redshift, use
stellar population synthesis models to theoretically calibrate the dependence
of the differential age evolution on the differential D4000, and estimate the
Hubble parameter taking into account both statistical and systematical errors.
We provide 8 new measurements of H(z) (see Tab. 4), and determine its change in
H(z) to a precision of 5-12% mapping homogeneously the redshift range up to z
\sim 1.1; for the first time, we place a constraint on H(z) at z \neq 0 with a
precision comparable with the one achieved for the Hubble constant (about 5-6%
at z \sim 0.2), and covered a redshift range (0.5 < z < 0.8) which is crucial
to distinguish many different quintessence cosmologies. These measurements have
been tested to best match a \Lambda CDM model, clearly providing a
statistically robust indication that the Universe is undergoing an accelerated
expansion. This method shows the potentiality to open a new avenue in constrain
a variety of alternative cosmologies, especially when future surveys (e.g.
Euclid) will open the possibility to extend it up to z \sim 2.Comment: 34 pages, 15 figures, 6 tables, published in JCAP. It is a companion
to Moresco et al. (2012b, http://arxiv.org/abs/1201.6658) and Jimenez et al.
(2012, http://arxiv.org/abs/1201.3608). The H(z) data can be downloaded at
http://www.physics-astronomy.unibo.it/en/research/areas/astrophysics/cosmology-with-cosmic-chronometer
Recommended from our members
The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer.
Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
A multi-factorial analysis of response to warfarin in a UK prospective cohort
Background Warfarin is the most widely used oral anticoagulant worldwide, but it has a narrow therapeutic index which necessitates constant monitoring of anticoagulation response. Previous genome-wide studies have focused on identifying factors explaining variance in stable dose, but have not explored the initial patient response to warfarin, and a wider range of clinical and biochemical factors affecting both initial and stable dosing with warfarin. Methods A prospective cohort of 711 patients starting warfarin was followed up for 6 months with analyses focusing on both non-genetic and genetic factors. The outcome measures used were mean weekly warfarin dose (MWD), stable mean weekly dose (SMWD) and international normalised ratio (INR) > 4 during the first week. Samples were genotyped on the Illumina Human610-Quad chip. Statistical analyses were performed using Plink and R. Results VKORC1 and CYP2C9 were the major genetic determinants of warfarin MWD and SMWD, with CYP4F2 having a smaller effect. Age, height, weight, cigarette smoking and interacting medications accounted for less than 20 % of the variance. Our multifactorial analysis explained 57.89 % and 56.97 % of the variation for MWD and SMWD, respectively. Genotypes for VKORC1 and CYP2C9*3, age, height and weight, as well as other clinical factors such as alcohol consumption, loading dose and concomitant drugs were important for the initial INR response to warfarin. In a small subset of patients for whom data were available, levels of the coagulation factors VII and IX (highly correlated) also played a role. Conclusion Our multifactorial analysis in a prospectively recruited cohort has shown that multiple factors, genetic and clinical, are important in determining the response to warfarin. VKORC1 and CYP2C9 genetic polymorphisms are the most important determinants of warfarin dosing, and it is highly unlikely that other common variants of clinical importance influencing warfarin dosage will be found. Both VKORC1 and CYP2C9*3 are important determinants of the initial INR response to warfarin. Other novel variants, which did not reach genome-wide significance, were identified for the different outcome measures, but need replication
Potassium Dependent Regulation of Astrocyte Water Permeability Is Mediated by cAMP Signaling
Astrocytes express potassium and water channels to support dynamic regulation of potassium homeostasis. Potassium kinetics can be modulated by aquaporin-4 (AQP4), the essential water channel for astrocyte water permeability regulation. We investigated whether extracellular potassium ([K+]o) can regulate astrocyte water permeability and the mechanisms of such an effect. Studies were performed on rat primary astrocytes and a rat astrocyte cell line transfected with AQP4. We found that 10mM [K+]o caused an immediate, more than 40%, increase in astrocyte water permeability which was sustained in 5min. The water channel AQP4 was a target for this regulation. Potassium induced a significant increase in intracellular cAMP as measured with a FRET based method and with enzyme immunoassay. We found that protein kinase A (PKA) could phosphorylate AQP4 in vitro. Further elevation of [K+]o to 35mM induced a global intracellular calcium response and a transient water permeability increase that was abolished in 5min. When inwardly rectifying potassium (Kir)-channels were blocked, 10mM [K+]o also induced a calcium increase and the water permeability increase no longer persisted. In conclusion, we find that elevation of extracellular potassium regulates AQP4 and astrocyte water permeability via intracellular signaling involving cAMP. A prolonged increase of astrocyte water permeability is Kir-channel dependent and this response can be impeded by intracellular calcium signaling. Our results support the concept of coupling between AQP4 and potassium handling in astrocytes
Influenza Activity and Composition of the 2022-23 Influenza Vaccine - United States, 2021-22 Season
Before the emergence of SARS-CoV-2, the virus that causes COVID-19, influenza activity in the United States typically began to increase in the fall and peaked in February. During the 2021-22 season, influenza activity began to increase in November and remained elevated until mid-June, featuring two distinct waves, with A(H3N2) viruses predominating for the entire season. This report summarizes influenza activity during October 3, 2021-June 11, 2022, in the United States and describes the composition of the Northern Hemisphere 2022-23 influenza vaccine. Although influenza activity is decreasing and circulation during summer is typically low, remaining vigilant for influenza infections, performing testing for seasonal influenza viruses, and monitoring for novel influenza A virus infections are important. An outbreak of highly pathogenic avian influenza A(H5N1) is ongoing; health care providers and persons with exposure to sick or infected birds should remain vigilant for onset of symptoms consistent with influenza. Receiving a seasonal influenza vaccine each year remains the best way to protect against seasonal influenza and its potentially severe consequences
Don’t Tread on Me: Masculine Honor Ideology in the U.S. and Militant Responses to Terrorism
Using both college students and a national sample of adults, the authors report evidence linking the ideology of masculine honor in the U.S. with militant responses to terrorism. In Study 1, individuals’ honor ideology endorsement predicted, among other outcomes, open-ended hostile responses to a fictitious attack on the Statue of Liberty and support for the use of extreme counterterrorism measures (e.g., severe interrogations), controlling for right-wing authoritarianism, social dominance orientation, and other covariates. In Study 2, the authors used a regional classification to distinguish honor state respondents from nonhonor state respondents, as has traditionally been done in the literature, and showed that students attending a southwestern university desired the death of the terrorists responsible for 9/11 more than did their northern counterparts. These studies are the first to show that masculine honor ideology in the U.S. has implications for the intergroup phenomenon of people’s responses to terrorism.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
- …