4 research outputs found

    Characterization and antitumoral activity of biohybrids based on turmeric and silver/silver chloride nanoparticles

    No full text
    The phyto-development of nanomaterials is one of the main challenges for scientists today, as it offers unusual properties and multifunctionality. The originality of our paper lies in the study of new materials based on biomimicking lipid bilayers loaded with chlorophyll, chitosan, and turmeric-generated nano-silver/silver chloride particles. These materials showed a good free radical scavenging capacity between 76.25 and 93.26% (in vitro tested through chemiluminescence method) and a good antimicrobial activity against Enterococcus faecalis bacterium (IZ > 10 mm). The anticancer activity of our developed bio-based materials was investigated against two cancer cell lines (human colorectal adenocarcinoma cells HT-29, and human liver carcinoma cells HepG2) and compared to one healthy cell line (human fibroblast BJ cell line). Cell viability was evaluated for all prepared materials after a 24 h treatment and was used to select the biohybrid with the highest therapeutic index (TI); additionally, the hemolytic activity of the samples was also evaluated. Finally, we investigated the morphological changes induced by the developed materials against the cell lines studied. Biophysical studies on these materials were done by correlating UV–Vis and FTIR absorption spectroscopy, with XRD, SANS, and SAXS methods, and with information provided by microscopic techniques (AFM, SEM/EDS). In conclusion, these “green” developed hybrid systems are an important alternative in cancer treatment, and against health problems associated with drug-resistant infections

    Biological performances of plasmonic biohybrids based on phyto-silver/silver chloride nanoparticles

    No full text
    Silver/silver chloride nanoparticles (Ag/AgClNPs), with a mean size of 48.2 ± 9.5 nm and a zeta potential value of −31.1 ± 1.9 mV, obtained by the Green Chemistry approach from a mixture of nettle and grape extracts, were used as “building blocks” for the “green” development of plas-monic biohybrids containing biomimetic membranes and chitosan. The mechanism of biohybrid formation was elucidated by optical analyses (UV–vis absorption and emission fluorescence, FTIR, XRD, and SAXS) and microscopic techniques (AFM and SEM). The aforementioned novel materials showed a free radical scavenging capacity of 75% and excellent antimicrobial properties against Escherichia coli (IGZ = 45 mm) and Staphylococcus aureus (IGZ = 35 mm). The antiproliferative activity of biohybrids was highlighted by a therapeutic index value of 1.30 for HT-29 cancer cells and 1.77 for HepG2 cancer cells. At concentrations below 102.2 ”M, these materials are not hemolytic, so they will not be harmful when found in the bloodstream. In conclusion, hybrid systems based on phyto-Ag/AgClNPs, artificial cell membranes, and chitosan can be considered potential adjuvants in liver and colorectal cancer treatment

    A review on biosynthesis of silver nanoparticles and their biocidal properties

    No full text
    corecore