211 research outputs found

    X- and Q-band EPR with cryogenic amplifiers independent of sample temperature

    Get PDF
    Inspired by the success of NMR cryoprobes, we recently reported a leap in X-band EPR sensitivity by equipping an ordinary EPR probehead with a cryogenic low-noise microwave amplifier placed closed to the sample in the same cryostat [Šimėnas et al. J. Magn. Reson. 322, 106876 (2021)]. Here, we explore, theoretically and experimentally, a more general approach, where the amplifier temperature is independent of the sample temperature. This approach brings a number of important advantages, enabling sensitivity improvement irrespective of sample temperature, as well as making it more practical to combine with ENDOR and Q-band resonators, where space in the sample cryostat is often limited. Our experimental realisation places the cryogenic preamplifier within an external closed-cycle cryostat, and we show CW and pulsed EPR and ENDOR sensitivity improvements at both X- and Q-bands with negligible dependence on sample temperature. The cryoprobe delivers signal-to-noise ratio enhancements that reduce the equivalent pulsed EPR measurement time by 16× at X-band and close to 5× at Q-band. Using the theoretical framework we discuss further improvements of this approach which could be used to achieve even greater sensitivity

    Effect of sintering under CO+N2/H2 and CO2+air atmospheres on the physicochemical features of a commercial nano-YSZ

    Get PDF
    Given the need to process anodes and composites based on nano-YSZ in reducing or in air containing additional CO2 atmospheres for the fabrication of solid oxide fuel cells (SOFCs), and solid oxide electrolysis cells (SOECs), we have studied the effect of the exposure to CO+N2/H2 or CO2+air mixtures during sintering of YSZ green pellets, prepared from commercial nanopowders, on their structure, microstructure, chemical composition and their electrical properties. The reduced sample shows Raman bands at 1298 and 1605 cm−1 that are assigned to the D and G bands of carbon, respectively. The bands intensity ratio ID/IG indicates a larger content of disordered carbon. X-ray photoelectron spectroscopy (XPS) shows that C is present in the reduced samples as reduced carbon. However, the samples sintered in CO2+air present C as carbonate-type. Impedance spectroscopy reveals that the highest total conductivity is for the reduced samples in the whole range of studied temperatures. In addition, sintering in CO2+air causes a detrimental effect on the grain boundary conductivity and therefore, on the total electrical conductivity of YSZ. It can be due to the presence of impurities such as carbonates and oxidised or even, polymerised carbonaceous species located at those areas.España Ministerio de Ciencia e Innovación and cofinanced with FEDER Funds under the Grant PID2019-104118RB-C2

    NMR and Raman Scattering Studies of Temperature- and Pressure-Driven Phase Transitions in CH3NH2NH2PbCl3 Perovskite

    Get PDF
    Three-dimensional methylhydrazinium (CH3NH2NH2+, MHy+) lead halides, related to the famous methylammonium (CH3NH3+, MA+) and formamidinium (CH(NH2)2+, FA) perovskites, are attractive optoelectronic materials crystallizing in polar structures. In this work, temperature-dependent 1H and 207Pb magic-angle spinning (MAS) NMR, Raman as well as high-pressure Raman studies of CH3NH2NH2PbCl3 (MHyPbCl3) are reported. Raman spectroscopy reveals many similarities between phonon properties of MHy lead halides and the MA and FA analogues. In particular, these families of compounds show an increase in wavenumber of cage modes when large I- ions are replaced by smaller Br- and then Cl- ones. They also show strong sensitivity of the CH3 torsional mode on size of the cavity occupied by MHy+ cation that decreases with decreasing size of the halide anion. The cage modes of MHyPbCl3 are, however, observed at significantly lower wavenumbers than similar modes of MAPbCl3 and FAPbCl3, indicating higher softness of MHyPbCl3. Temperature-dependent Raman and NMR studies demonstrate that the MHy+ cations in MHyPbCl3 are significantly less affected by the temperature-induced phase transition than the Pb-Cl framework. This suggests a displacive type of the phase transition dominated by tilting and deformation of the PbCl6 octahedra. Analysis of the 207Pb MAS NMR spectra reveals the presence of two differently distorted PbCl6 octahedra and diminishing (increasing) distortion of the less (more) distorted octahedra in the high-temperature phase. Pressure-dependent Raman studies reveal the presence of a single first-order pressure-induced phase transition between 0.72 and 1.27 GPa. Analysis of the spectra indicates that the driving forces for the pressure-induced phase transition in MHyPbCl3 are tilting and distortion of the PbCl6 octahedra accompanied by reorientation of MHy+ cations. Raman spectra do not show evidence of any additional phase transition or amorphization up to 6.95 GPa

    Canopy Changes of Brachiaria Managed Under Continuous Stocking in the Dry-Water Transition

    Get PDF
    Pasture supplementation is an alternative to take advantage of the forage mass deferred in the rainy season and maintain or provide weight gain in periods of rain absence. The objective was to compare the structural characteristics, mass production, density and population dynamics of tillers of Urochloa brizantha cv. ‘Paiaguas’ and U. spp. cv. ‘Convert’ under fixed and continuous stocking with steers supplemented in the trough or on the ground in the water/dry transition period. The experiment was carried out at Jatai Federal University, from March to June, in a completely randomized design and a 2x2 factorial scheme, using six paddocks/treatment. The completely randomized design was adopted and variance analysis was performed with software SAS following the GLM procedure, were compared using repeated-measures. There was a significant interaction between Brachiaria and the method of supplementation for basal, aerial, and total tiller density. Convert had an average of 551 basal and 577 total tiller/m2. Paiaguas grass presented higher tiller density (1,03 vs. 582 tiller/m2) and higher tiller birth rate (12.92 vs. 9.14%) than Convert. No significant difference was observed between brachiarias. The average height of Paiaguas was 62.34 and 50.70 cm for Convert. The average height was 57.83 and on the ground it was 54.90 cm. Supplementation offer method changed Paiaguas canopy. The Convert showed higher leaf and dead mass production but lower weeds despite its smaller tillering

    Morphogenesis of Marandu Brachiaria Under Different Nitrogen Rates in the Brazilian Savannah

    Get PDF
    Nitrogen fertilization contributes to grass growth and, for this reason, the objective was to evaluate the morphogenic characteristics of Urochloa brizantha cultivar Marandu subjected to different nitrogen rates (0, 50, 100 and 150 kg N.ha-1) in the Brazilian savannah through the variables number of leaves.tiller-1, leaf growth, leaf average size, senescent leaf.tiller-1 number and stem+pseudostem average size. The experiment was established in the Forage and Pastures Sector of Jatai Federal University (UFJ) and, after the soil correction and fertilization, the Marandu grass plots were installed in a randomized blocks experimental design, with four treatments and four replications. When the forage canopy reached the cutting height (30 cm) it was homogenized with pruning shears and four tillers per plot were identified with colored tape and a locating stake. Morphogenesis data was collected every two days, measuring the leaves size and stem+pseudostem size, and leaves were classifying according to their physiological state. Marandu cultivar showed increasing response in leaves number and in leaf growth in nitrogen doses from 50 to 100 kg N.ha-1. The number of senescent leaf.tiller-1 decrease when nitrogen fertilization increase from 0 to 100 kg N.ha-1. Marandu showed a morphogenic response to nitrogen fertilization and up to 100 kg N.ha-1 can be used

    Q-band EPR cryoprobe

    Get PDF
    Following the success of cryogenic EPR signal preamplification at X-band, we present a Q-band EPR cryoprobe compatible with a standard EPR resonator. The probehead is equipped with a cryogenic ultra low-noise microwave amplifier and its protection circuit that are placed close to the sample in the same cryostat. Our cryoprobe maintains the same sample access and tuning which is typical in Q-band EPR, as well as supports high-power pulsed experiments on typical samples. The performance of our setup is benchmarked against that of existing commercial and home-built Q-band spectrometers, using CW EPR and pulsed EPR/ENDOR experiments to reveal a significant sensitivity improvement which reduces the measurement time by a factor of about 40× at 6 K temperature at reduced power levels

    Electron paramagnetic resonance study of ferroelectric phase transition and dynamic effects in a Mn²⁺ doped [NH₄][Zn(HCOO)₃] hybrid formate framework

    Get PDF
    We present an X- and Q-band continuous wave (CW) and pulse electron paramagnetic resonance (EPR) study of a manganese doped [NH4][Zn(HCOO)3] hybrid framework, which exhibits a ferroelectric structural phase transition at 190 K. The CW EPR spectra obtained at different temperatures exhibit clear changes at the phase transition temperature. This suggests a successful substitution of the Zn2+ ions by the paramagnetic Mn2+ centers, which is further confirmed by the pulse EPR and 1H ENDOR experiments. Spectral simulations of the CW EPR spectra are used to obtain the temperature dependence of the Mn2+ zero-field splitting, which indicates a gradual deformation of the MnO6 octahedra indicating a continuous character of the transition. The determined data allow us to extract the critical exponent of the order parameter (β = 0.12), which suggests a quasi two-dimensional ordering in [NH4][Zn(HCOO)3]. The experimental EPR results are supported by the density functional theory calculations of the zero-field splitting parameters. Relaxation time measurements of the Mn2+ centers indicate that the longitudinal relaxation is mainly driven by the optical phonons, which correspond to the vibrations of the metal–oxygen octahedra. The temperature behavior of the transverse relaxation indicates a dynamic process in the ordered ferroelectric phase
    corecore