19 research outputs found

    Quasiparticle excitation in and around the vortex core of underdoped YBa_2Cu_4O_8 studied by site-selective NMR

    Full text link
    We report a site-selective ^{17}O spin-lattice relaxation rate T_1^{-1} in the vortex state of underdoped YBa_2Cu_4O_8. We found that T_1^{-1} at the planar sites exhibits an unusual nonmonotonic NMR frequency dependence. In the region well outside the vortex core, T_1^{-1} cannot be simply explained by the density of states of the Doppler-shifted quasiparticles in the d-wave superconductor. Based on T_1^{-1} in the vortex core region, we establish strong evidence that the local density of states within the vortex core is strongly reduced.Comment: 5 pages, 3 figure

    Massless Dirac Fermions, Gauge Fields, and Underdoped Cuprates

    Full text link
    We study 2+1 dimensional massless Dirac fermions and bosons coupled to a U(1) gauge field as a model for underdoped cuprates. We find that the uniform susceptibility and the specific heat coefficient are logarithmically enhanced (compared to linear-in-T behavior) due to the fluctuation of transverse gauge field which is the only massless mode at finite boson density. We analyze existing data, and find good agreement in the spin gap phase. Within our picture, the drop of the susceptibility below the superconducting T_c arises from the suppression of gauge fluctuations.Comment: 4 pages, REVTEX, 1 eps figur

    Normal-state magnetic susceptibility in a bilayer cuprate

    Full text link
    The magnetic susceptibility of high-T_c superconductors is investigated in the normal state using a coupled bilayer model. While this model describes in a natural way the normal-state pseudogaps seen in c-axis optical conductivity on underdoped samples, it predicts a weakly increasing susceptibility with decreasing temperature and cannot explain the magnetic pseudogaps exhibited in NMR measurements. Our result, together with some experimental evidence suggest that the mechanism governing the c-axis optical pseudogap is different from that for the aba-b plane magnetic pseudogap.Comment: 5 pages, 2 figure

    Charge degree of freedom and single-spin fluid model in YBa_2Cu_4O_8

    Full text link
    We present a 17O nuclear magnetic resonance study in the stoichiometric superconductor YBa_2Cu_4O_8. A double irradiation method enables us to show that, below around 180 K, the spin-lattice relaxation rate of plane oxygen is not only driven by magnetic, but also significantly by quadrupolar fluctuations, i.e. low-frequency charge fluctuations. In the superconducting state, on lowering the temperature, the quadrupolar relaxation diminishes faster than the magnetic one. These findings show that, with the opening of the pseudo spin gap, a charge degree of freedom of mainly oxygen character is present in the electronic low-energy excitation spectrum.Comment: 4 pages, 3 figures, REVTE
    corecore