59 research outputs found
Heregulin inhibits proliferation via ERKs and phosphatidyl-inositol 3-kinase activation but regulates urokinase plasminogen activator independently of these pathways in metastatic mammary tumor cells
Heregulin (HRG) and type I receptor tyrosine kinase (RTK) expression was investigated in the highly invasive and metastatic LM3 cell line, our previously described model of metastasis for mammary cancer (Bal de Kier Joffe et al. [1986] Invasion Metastasis 6:302-12; Urtreger et al. [1997] Int J Oncol 11:489-96). Although LM3 cells do not express HRG, they exhibit high levels of ErbB-2 and ErbB-3 as well as moderate expression of ErbB-4. Addition of exogenous HRGβ1 resulted in inhibition of both proliferation and migration of LM3 cells. HRGβ1 was also able to decrease the activity of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP-9), 2 key enzymes in the invasion and metastatic cascade. HRGβ1 treatment of LM3 cells induced tyrosine phosphorylation of ErbB-2, ErbB-3 and ErbB-4 as well as the formation of ErbB-2/ErbB-3 and ErbB-2/ErbB-4 heterodimers. Assessment of the signaling pathways involved in HRGβ1 action indicated that the addition of HRGβ1 to LM3 cells resulted in activation of phosphatidylinositol 3-kinase (PI-3K) and in strong induction of the association of the p85 subunit of PI-3K with ErbB-3. HRGβ1 also caused the rapid activation of ERKI/ERK2 and Stat3 and Stat5 (signal transducers and activators of transcription [STAT]). This is the first demonstration of the ability of HRGβ1 to activate STATs in mammary tumor cells. Blockage of PI-3K activity with its chemical inhibitor wortmannin, or of MEKI/ERKs activity with PD98059, resulted in suppression of the ability of HRGβ1 to inhibit LM3 cell growth. Notwithstanding the suppression of these 2 signaling pathways, HRGβ1 still proved capable of inhibiting uPA activity. Therefore, our results provide evidence that signaling pathways involved in HRGβ1-induced proliferation appear to be distinct from those involved in HRGβ1 regulation of uPA, a protease that plays a pivotal role in invasion and metastasis. © 2002 Wiley-Liss, Inc.Fil:Puricelli, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Labriola, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Salatino, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Balañá, M.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Pignataro, O.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Charreau, E.H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Elizalde, P.V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
2018 consensus statement by the Spanish Society of Pathology and the Spanish Society of Medical Oncology on the diagnosis and treatment of cancer of unknown primary
Cancer of unknown primary (CUP) is defned as a heterogeneous group of tumours that present with metastasis, and in which attempts to identify the original site have failed. They difer from other primary tumours in their biological features and how they spread, which means that they can be considered a separate entity. There are several hypotheses regarding their origin, but the most plausible explanation for their aggressiveness and chemoresistance seems to involve chromosomal instability. Depending on the type of study done, CUP can account for 2–9% of all cancer patients, mostly 60–75 years old. This article
reviews the main clinical, pathological, and molecular studies conducted to analyse and determine the origin of CUP.The main strategies for patient management and treatment, by both clinicians and pathologists, are also addressed.The authors are grateful for the editorial assistance of Dr. Fernando Sánchez-Barbero of HealthCo (Madrid, Spain) in the production of this manuscript. SEOM and SEAP are grateful for the fnancial support for this project in the form of unrestricted grants from Ferrer Diagnostic, OncoDNA and Foundation Medicine/Roche
Phase II Clinical Trial With Pegylated Liposomal Doxorubicin (CAELYX®/Doxil®) and Quality of Life Evaluation (EORTC QLQ-C30) in Adult Patients With Advanced Soft Tissue Sarcomas: A study of the Spanish Group for Research in Sarcomas (GEIS)
Background: Pegylated liposomal doxorubicin (PLD), a formulation with pharmacokinetic differences with respect
to doxorubicin (DXR), might benefit patients with advanced soft tissue sarcoma (STS) pretreated with DXR
Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program
Altres ajuts: This work was supported by the Obra Social "La Caixa" (to M. Esteller).Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease
Phase I/II trial of doxorubicin and fixed dose-rate infusion gemcitabine in advanced soft tissue sarcomas: a GEIS study
The aim of the study was to determine the dose-limiting toxicity and maximum tolerated dose of a first-line combination of doxorubicin and gemcitabine in adult patients with advanced soft tissue sarcomas and to explore its activity and toxicity, and the presence of possible interactions between these agents. Patients with measurable disease were initially treated with doxorubicin 60 mg m−2 by i.v. bolus on day 1 followed by gemcitabine at 800 mg m−2 over 80 min on days 1 and 8, every 21 days. Concentrations of gemcitabine and 2′,2′-difluorodeoxyuridine in plasma, and gemcitabine triphosphate levels in peripheral blood mononuclear cells were determined during 8 h after the start of gemcitabine infusion. Myelosuppression and stomatitis were limiting toxicities, and the initial dose level was applied for the Phase II trial, where grade 3–4 granulocytopenia occurred in 70% of patients, grade 3 stomatitis in 46% and febrile neutropenia in 20%. Objective activity in 36 patients was 22% (95% CI: 9–35%), and a 50% remission rate was noted in leiomyosarcomas. Administration of doxorubicin preceding gemcitabine significantly reduced the synthesis of gemcitabine triphosphate. Clinical activity, similar to that of single-agent doxorubicin, and the toxicity encountered do not justify further studies with this schedule of administration
- …