13,985 research outputs found
A Lightweight and Attack Resistant Authenticated Routing Protocol for Mobile Adhoc Networks
In mobile ad hoc networks, by attacking the corresponding routing protocol,
an attacker can easily disturb the operations of the network. For ad hoc
networks, till now many secured routing protocols have been proposed which
contains some disadvantages. Therefore security in ad hoc networks is a
controversial area till now. In this paper, we proposed a Lightweight and
Attack Resistant Authenticated Routing Protocol (LARARP) for mobile ad hoc
networks. For the route discovery attacks in MANET routing protocols, our
protocol gives an effective security. It supports the node to drop the invalid
packets earlier by detecting the malicious nodes quickly by verifying the
digital signatures of all the intermediate nodes. It punishes the misbehaving
nodes by decrementing a credit counter and rewards the well behaving nodes by
incrementing the credit counter. Thus it prevents uncompromised nodes from
attacking the routes with malicious or compromised nodes. It is also used to
prevent the denial-of-service (DoS) attacks. The efficiency and effectiveness
of LARARP are verified through the detailed simulation studies.Comment: 14 Pages, IJWM
Analysis of melt-textured YBCO with nanoscale inclusions
Recently, particles with the chemical composition Y2Ba 4CuMOx where M U, Nb, Zr, etc., and sizes in the range of 50 - 200 nm have been generated within the YBCO matrix of bulk, melt-processed superconductors in order to serve as effective flux pinning sites. By means of AFM and electron backscatter diffraction (EBSD) measurements, we analyse the spatial distribution and the size distribution of these nanoparticles within the superconducting YBCO matrix
The Hydrodynamical Limit of Quantum Hall system
We study the current algebra of FQHE systems in the hydrodynamical limit of
small amplitude, long-wavelength fluctuations. We show that the algebra
simplifies considerably in this limit. The hamiltonian is expressed in a
current-current form and the operators creating inter-Landau level and lowest
Landau level collective excitations are identified.Comment: Revtex, 16 page
Factors determining spawning success in Penaeus monodon Fabricius
Spawning success in relation to the size of spawner, clumping of eggs, percentage of spawning and frequency of spawning was studied in Penaeus monodon collected off Tamil Nadu, India. The results indicated positive correlation between the size of spawner and the fecundity and hatching percentage, but not the start of hatching. Hatching characteristics were influenced by clumping of eggs or abortive spawning; the greater the clumping, the longer the time taken for hatching, resulting in a lower hatching percentage. The start of hatching time increased when the frequency of spawning increased. Lower hatching rate was observed as the frequency of spawning increased
Closing the Windows on Mev Tau Neutrinos
In this note, we analyze various constraints on the ``visible'' decay modes
of a massive neutrino, and
, where is a light
neutrino. The BEBC beam dump experiment provides model-independent constraints
on these modes. The lifetime for the mode is constrained
to be We point
out that the same experiment implies a similar constraint on the
mode. This results in a new upper limit on the transition
magnetic moment of , . Furthermore, a limit on the electric charge of
may be obtained, . Combining
these constraints with those arising from supernova observations and primordial
nucleosynthesis calculations, we show that these ``visible'' decays cannot be
the dominant decay modes of the neutrino.Comment: 8 pgs. LaTeX (1 uuencoded fig., also available on request),
Bartol-930XXX, JHU-TIPAC-930026, UM-TH-93-2
Collective treatment of High Energy Thresholds in SUSY - GUTs
Supersymmetric GUTs are the most natural extension of the Standard model
unifying electroweak and strong forces. Despite their indubitable virtues,
among these the gauge coupling unification and the quantization of the electric
charge, one of their shortcomings is the large number of parameters used to
describe the high energy thresholds (HET), which are hard to handle. We present
a new method according to which the effects of the HET, in any GUT model, can
be described by fewer parameters that are randomly produced from the original
set of the parameters of the model. In this way, regions favoured by the
experimental data are easier to locate, avoiding a detailed and time consuming
exploration of the parameter space, which is multidimensional even in the most
economic unifying schemes. To check the efficiency of this method, we directly
apply it to a SUSY SO(10) GUT model in which the doublet-triplet splitting is
realized through the Dimopoulos-Wilczek mechanism. We show that the demand of
gauge coupling unification, in conjunction with precision data, locates regions
of the parameter space in which values of the strong coupling \astrong are
within the experimental limits, along with a suppressed nucleon decay, mediated
by a higgsino driven dimension five operators, yielding lifetimes that are
comfortably above the current experimental bounds. These regions open up for
values of the SUSY breaking parameters m_0, M_1/2 < 1 TeV being therefore
accessible to LHC.Comment: 21 pages, 8 figures, UA-NPPS/BSM-10/02 (added
- …