7 research outputs found

    SAPHIRE 8 Volume 2 - Technical Reference

    Full text link
    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of computer programs that were developed to create and analyze probabilistic risk assessment (PRAs). Herein information is provided on the principles used in the construction and operation of Version 8.0 of the SAPHIRE system. This report summarizes the fundamental mathematical concepts of sets and logic, fault trees, and probability. This volume then describes the algorithms used to construct a fault tree and to obtain the minimal cut sets. It gives the formulas used to obtain the probability of the top event from the minimal cut sets, and the formulas for probabilities that apply for various assumptions concerning reparability and mission time. It defines the measures of basic event importance that SAPHIRE can calculate. This volume gives an overview of uncertainty analysis using simple Monte Carlo sampling or Latin Hypercube sampling, and states the algorithms used by this program to generate random basic event probabilities from various distributions. Also covered are enhance capabilities such as seismic analysis, Workspace algorithms, cut set "recovery," end state manipulation, and use of "compound events.

    Common-cause failure analysis in event assessment

    No full text

    Integrated Reliability and Risk Analysis System (IRRAS) Version 2. 0 user's guide

    Get PDF
    The Integrated Reliability and Risk Analysis System (IRRAS) is a state-of-the-art, microcomputer-based probabilistic risk assessment (PRA) model development and analysis tool to address key nuclear plant safety issues. IRRAS is an integrated software tool that gives the user the ability to create and analyze fault trees and accident sequences using a microcomputer. This program provides functions that range from graphical fault tree construction to cut set generation and quantification. Also provided in the system is an integrated full-screen editor for use when interfacing with remote mainframe computer systems. Version 1.0 of the IRRAS program was released in February of 1987. Since that time, many user comments and enhancements have been incorporated into the program providing a much more powerful and user-friendly system. This version has been designated IRRAS 2.0 and is the subject of this user's guide. Version 2.0 of IRRAS provides all of the same capabilities as Version 1.0 and adds a relational data base facility for managing the data, improved functionality, and improved algorithm performance. 9 refs., 292 figs., 4 tabs

    SAPHIRE technical reference manual: IRRAS/SARA Version 4.0

    No full text
    This report provides information on the principles used in the construction and operation of Version 4.0 of the Integrated Reliability and Risk Analysis System (IRRAS) and the System Analysis and Risk Assessment (SARA) system. It summarizes the fundamental mathematical concepts of sets and logic, fault trees, and probability. The report then describes the algorithms that these programs use to construct a fault tree and to obtain the minimal cut sets. It gives the formulas used to obtain the probability of the top event from the minimal cut sets, and the formulas for probabilities that are appropriate under various assumptions concerning repairability and mission time. It defines the measures of basic event importance that these programs can calculate. The report gives an overview of uncertainty analysis using simple Monte Carlo sampling or Latin Hypercube sampling, and states the algorithms used by these programs to generate random basic event probabilities from various distributions. Further references are given, and a detailed example of the reduction and quantification of a simple fault tree is provided in an appendix

    Precursor analysis for offshore oil and gas drilling : from prescriptive to risk-informed regulation

    No full text
    The Oil Spill Commission’s chartered mission - to “develop options to guard against … any oil spills associated with offshore drilling in the future” (National Commission 2010) - presents a major challenge: how to reduce the risk of low-frequency oil spill events, and especially high-consequence events like the Deepwater Horizon accident, when historical experience contains few oil spills of material scale and none approaching the significance of the Deepwater Horizon. In this paper, we consider precursor analysis as an answer to this challenge, addressing first its development and use in nuclear reactor regulation and then its applicability to offshore oil and gas drilling. We find that the nature of offshore drilling risks, the operating information obtainable by the regulator, and the learning curve provided by 30 years of nuclear experience make precursor analysis a promising option available to the U.S. Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) to bring cost-effective, risk-informed oversight to bear on the threat of catastrophic oil spills
    corecore