468 research outputs found

    Is U.S. health care an appropriate system? A strategic perspective from systems science

    Get PDF
    <p>Abstract</p> <p>Context</p> <p>Systems science provides organizational principles supported by biologic findings that can be applied to any organization; any incongruence indicates an incomplete or an already failing system. U.S. health care is commonly referred to as a system that consumes an ever- increasing percentage of the gross domestic product and delivers seemingly diminishing value.</p> <p>Objective</p> <p>To perform a comparative study of U.S. health care with the principles of systems science and, if feasible, propose solutions.</p> <p>Design</p> <p>General systems theory provides the theoretical foundation for this observational research.</p> <p>Main Outcome Measures</p> <p>A degree of compliance of U.S. health care with systems principles and its space-time functional location within the dynamic systems model.</p> <p>Results of comparative analysis</p> <p>U.S. health care is an incomplete system further threatened by the fact that it functions in the zone of chaos within the dynamic systems model.</p> <p>Conclusion</p> <p>Complying with systems science principles and the congruence of pertinent cycles, U.S. health care would likely dramatically improve its value creation for all of society as well as its resiliency and long-term sustainability.</p> <p>Immediate corrective steps could be taken: Prioritize and incentivize <it>health </it>over <it>care</it>; restore fiscal soundness by combining health and life insurance for the benefit of the insured and the payer; rebalance horizontal/providers and vertical/government hierarchies.</p

    Aptamer-based multiplexed proteomic technology for biomarker discovery

    Get PDF
    Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine

    EMMIE and engineering: What works as evidence to improve decisions?

    Get PDF
    While written by a proponent of realism, this article argues in favour of a pragmatic approach to evaluation. It argues that multiple sources of evidence collected using diverse research methods can be useful in conducting informative evaluations of programmes, practices and policies. It argues in particular that methods, even if their assumptions appear incommensurable with one another, should be chosen to meet the evidence needs of decision-makers. These evidence needs are captured in the acronym, EMMIE, which refers to Effect size, Mechanism, Moderator (or context), Implementation and Economic impact. Finally the article questions evidence hierarchies that are inspired by clinical trials, and suggests instead that, notwithstanding the clear differences in the physical and social worlds, engineering may provide a superior model for evaluators to try to emulate. And engineering is, above all, a pragmatic field

    A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of immobilized enzymes for catalyzing various biotransformations is now a widely used approach. In recent years, cross-linked enzyme aggregates (CLEAs) have emerged as a novel and versatile biocatalyst design. The present work deals with the preparation of a CLEA from a commercial preparation, Pectinex™ Ultra SP-L, which contains pectinase, xylanase and cellulase activities. The CLEA obtained could be used for any of the enzyme activities. The CLEA was characterized in terms of kinetic parameters, thermal stability and reusability in the context of all the three enzyme activities.</p> <p>Results</p> <p>Complete precipitation of the three enzyme activities was obtained with n-propanol. When resulting precipitates were subjected to cross-linking with 5 mM glutaraldehyde, the three activities initially present (pectinase, xylanase and cellulase) were completely retained after cross-linking. The V<sub>max</sub>/K<sub>m </sub>values were increased from 11, 75 and 16 to 14, 80 and 19 in case of pectinase, xylanase and cellulase activities respectively. The thermal stability was studied at 50°C, 60°C and 70°C for pectinase, xylanase and cellulase respectively. Half-lives were improved from 17, 22 and 32 minutes to 180, 82 and 91 minutes for pectinase, xylanase and cellulase respectively. All three of the enzymes in CLEA could be reused three times without any loss of activity.</p> <p>Conclusion</p> <p>A single multipurpose biocatalyst has been designed which can be used for carrying out three different and independent reactions; 1) hydrolysis of pectin, 2) hydrolysis of xylan and 3) hydrolysis of cellulose. The preparation is more stable at higher temperatures as compared to the free enzymes.</p
    corecore