339 research outputs found
Adaptive Regret Minimization in Bounded-Memory Games
Online learning algorithms that minimize regret provide strong guarantees in
situations that involve repeatedly making decisions in an uncertain
environment, e.g. a driver deciding what route to drive to work every day.
While regret minimization has been extensively studied in repeated games, we
study regret minimization for a richer class of games called bounded memory
games. In each round of a two-player bounded memory-m game, both players
simultaneously play an action, observe an outcome and receive a reward. The
reward may depend on the last m outcomes as well as the actions of the players
in the current round. The standard notion of regret for repeated games is no
longer suitable because actions and rewards can depend on the history of play.
To account for this generality, we introduce the notion of k-adaptive regret,
which compares the reward obtained by playing actions prescribed by the
algorithm against a hypothetical k-adaptive adversary with the reward obtained
by the best expert in hindsight against the same adversary. Roughly, a
hypothetical k-adaptive adversary adapts her strategy to the defender's actions
exactly as the real adversary would within each window of k rounds. Our
definition is parametrized by a set of experts, which can include both fixed
and adaptive defender strategies.
We investigate the inherent complexity of and design algorithms for adaptive
regret minimization in bounded memory games of perfect and imperfect
information. We prove a hardness result showing that, with imperfect
information, any k-adaptive regret minimizing algorithm (with fixed strategies
as experts) must be inefficient unless NP=RP even when playing against an
oblivious adversary. In contrast, for bounded memory games of perfect and
imperfect information we present approximate 0-adaptive regret minimization
algorithms against an oblivious adversary running in time n^{O(1)}.Comment: Full Version. GameSec 2013 (Invited Paper
Distributed Computing in the Asynchronous LOCAL model
The LOCAL model is among the main models for studying locality in the
framework of distributed network computing. This model is however subject to
pertinent criticisms, including the facts that all nodes wake up
simultaneously, perform in lock steps, and are failure-free. We show that
relaxing these hypotheses to some extent does not hurt local computing. In
particular, we show that, for any construction task associated to a locally
checkable labeling (LCL), if is solvable in rounds in the LOCAL model,
then remains solvable in rounds in the asynchronous LOCAL model.
This improves the result by Casta\~neda et al. [SSS 2016], which was restricted
to 3-coloring the rings. More generally, the main contribution of this paper is
to show that, perhaps surprisingly, asynchrony and failures in the computations
do not restrict the power of the LOCAL model, as long as the communications
remain synchronous and failure-free
Local algorithms : Self-stabilization on speed
Non peer reviewe
Collaborative Delivery with Energy-Constrained Mobile Robots
We consider the problem of collectively delivering some message from a
specified source to a designated target location in a graph, using multiple
mobile agents. Each agent has a limited energy which constrains the distance it
can move. Hence multiple agents need to collaborate to move the message, each
agent handing over the message to the next agent to carry it forward. Given the
positions of the agents in the graph and their respective budgets, the problem
of finding a feasible movement schedule for the agents can be challenging. We
consider two variants of the problem: in non-returning delivery, the agents can
stop anywhere; whereas in returning delivery, each agent needs to return to its
starting location, a variant which has not been studied before.
We first provide a polynomial-time algorithm for returning delivery on trees,
which is in contrast to the known (weak) NP-hardness of the non-returning
version. In addition, we give resource-augmented algorithms for returning
delivery in general graphs. Finally, we give tight lower bounds on the required
resource augmentation for both variants of the problem. In this sense, our
results close the gap left by previous research.Comment: 19 pages. An extended abstract of this paper was published at the
23rd International Colloquium on Structural Information and Communication
Complexity 2016, SIROCCO'1
On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games
In \emph{bandwidth allocation games} (BAGs), the strategy of a player
consists of various demands on different resources. The player's utility is at
most the sum of these demands, provided they are fully satisfied. Every
resource has a limited capacity and if it is exceeded by the total demand, it
has to be split between the players. Since these games generally do not have
pure Nash equilibria, we consider approximate pure Nash equilibria, in which no
player can improve her utility by more than some fixed factor through
unilateral strategy changes. There is a threshold (where
is a parameter that limits the demand of each player on a specific
resource) such that -approximate pure Nash equilibria always exist for
, but not for . We give both
upper and lower bounds on this threshold and show that the
corresponding decision problem is -hard. We also show that the
-approximate price of anarchy for BAGs is . For a restricted
version of the game, where demands of players only differ slightly from each
other (e.g. symmetric games), we show that approximate Nash equilibria can be
reached (and thus also be computed) in polynomial time using the best-response
dynamic. Finally, we show that a broader class of utility-maximization games
(which includes BAGs) converges quickly towards states whose social welfare is
close to the optimum
Recommended from our members
Codynamics of Four Variables Involved in Dengue Transmission and Its Control by Community Intervention: A System of Four Difference Equations
In the case of Dengue transmission and control, the interaction of nature and society is captured by a system of difference equations. For the purpose of studying the dynamics of these interactions, four variables involved in a Dengue epidemic: proportion of infected people (P), number of mosquitoes involved in transmission (M), mosquito habitats (H) and population awareness (A), are linked in a system of difference equations: [equation omitted].
The constraints have socio-ecological meaning. The initial conditions are such that 0 P0 1; (M0;H0;A0) (0; 0; 0), the parameters l,a, c, r 2 (0; 1), and the parameters f, i, b and p are positive. The paper is concerned with the analysis of solutions of the above system for p = q. We studied the global asymptotic stability of the degenerate equilibrium. We also propose extensions of the above model and some open problems. We explored the role of memory in community awareness by numerical simulations. When the memory parameter is large, the proportion of infected people decreases and stabilizes at zero. Below a critical point we observe periodic oscillations
Self-Stabilizing Byzantine Asynchronous Unison
We explore asynchronous unison in the presence of systemic transient and
permanent Byzantine faults in shared memory. We observe that the problem is not
solvable under less than strongly fair scheduler or for system topologies with
maximum node degree greater than two. We present a self-stabilizing
Byzantine-tolerant solution to asynchronous unison for chain and ring
topologies. Our algorithm has minimum possible containment radius and optimal
stabilization time
A general lower bound for collaborative tree exploration
We consider collaborative graph exploration with a set of agents. All
agents start at a common vertex of an initially unknown graph and need to
collectively visit all other vertices. We assume agents are deterministic,
vertices are distinguishable, moves are simultaneous, and we allow agents to
communicate globally. For this setting, we give the first non-trivial lower
bounds that bridge the gap between small () and large () teams of agents. Remarkably, our bounds tightly connect to existing results
in both domains.
First, we significantly extend a lower bound of
by Dynia et al. on the competitive ratio of a collaborative tree exploration
strategy to the range for any . Second,
we provide a tight lower bound on the number of agents needed for any
competitive exploration algorithm. In particular, we show that any
collaborative tree exploration algorithm with agents has a
competitive ratio of , while Dereniowski et al. gave an algorithm
with agents and competitive ratio , for any
and with denoting the diameter of the graph. Lastly, we
show that, for any exploration algorithm using agents, there exist
trees of arbitrarily large height that require rounds, and we
provide a simple algorithm that matches this bound for all trees
More efficient periodic traversal in anonymous undirected graphs
We consider the problem of periodic graph exploration in which a mobile
entity with constant memory, an agent, has to visit all n nodes of an arbitrary
undirected graph G in a periodic manner. Graphs are supposed to be anonymous,
that is, nodes are unlabeled. However, while visiting a node, the robot has to
distinguish between edges incident to it. For each node v the endpoints of the
edges incident to v are uniquely identified by different integer labels called
port numbers. We are interested in minimisation of the length of the
exploration period.
This problem is unsolvable if the local port numbers are set arbitrarily.
However, surprisingly small periods can be achieved when assigning carefully
the local port numbers. Dobrev et al. described an algorithm for assigning port
numbers, and an oblivious agent (i.e. agent with no memory) using it, such that
the agent explores all graphs of size n within period 10n. Providing the agent
with a constant number of memory bits, the optimal length of the period was
previously proved to be no more than 3.75n (using a different assignment of the
port numbers). In this paper, we improve both these bounds. More precisely, we
show a period of length at most 4 1/3 n for oblivious agents, and a period of
length at most 3.5n for agents with constant memory. Moreover, we give the
first non-trivial lower bound, 2.8n, on the period length for the oblivious
case
Recommended from our members
Exploring the meteorological potential for planning a high performance European Electricity Super-grid: optimal power capacity distribution among countries
The concept of a European Super-grid for electricity presents clear advantages for a reliable and affordable renewable power production (photovoltaics and wind). Based on the mean-variance portfolio optimization analysis, we explore optimal scenarios for the allocation of new renewable capacity at national level in order to provide to energy decision-makers guidance about which regions should be mostly targeted to either maximize total production or reduce its day-to-day variability.
The results show that the existing distribution of renewable generation capacity across Europe is far from optimal: i.e., a 'better' spatial distribution of resources could have been achieved with either a ~31% increase in mean power supply (for the same level of day-to-day variability) or a ~37.5% reduction in day-to-day variability (for the same level of mean productivity). Careful planning of additional increments in renewable capacity at the European level could, however, act to significantly ameliorate this deficiency. The choice of where to deploy resources depends, however, on the objective being pursued – on the one hand, if the goal is to maximize average output, then new capacity is best allocated in the countries with highest resources, whereas investment in additional capacity in a north/south dipole pattern across Europe would act to most reduce daily variations and thus decrease the day-to-day volatility of renewable power supply
- …