1,577 research outputs found

    Heterotic String Corrections from the Dual Type II String

    Full text link
    We introduce a method of using the a dual type IIA string to compute alpha'-corrections to the moduli space of heterotic string compactifications. In particular we study the hypermultiplet moduli space of a heterotic string on a K3 surface. One application of this machinery shows that type IIB strings compactified on a Calabi-Yau space suffer from worldsheet instantons, spacetime instantons and, in addition, "mixed" instantons which in a sense are both worldsheet and spacetime. As another application we look at the hyperkaehler limit of the moduli space in which the K3 surface becomes an ALE space. This is a variant of the "geometric engineering" method used for vector multiplet moduli space and should be applicable to a wide range of examples. In particular we reproduce Sen and Witten's result for the heterotic string on an A1 singularity and a trivial bundle and generalize this to a collection of E8 point-like instantons on an ALE space.Comment: 21 pages, 5 figures, refs adde

    Decompactifications and Massless D-Branes in Hybrid Models

    Full text link
    A method of determining the mass spectrum of BPS D-branes in any phase limit of a gauged linear sigma model is introduced. A ring associated to monodromy is defined and one considers K-theory to be a module over this ring. A simple but interesting class of hybrid models with Landau-Ginzburg fibres over CPn are analyzed using special Kaehler geometry and D-brane probes. In some cases the hybrid limit is an infinite distance in moduli space and corresponds to a decompactification. In other cases the hybrid limit is at a finite distance and acquires massless D-branes. An example studied appears to correspond to a novel theory of supergravity with an SU(2) gauge symmetry where the gauge and gravitational couplings are necessarily tied to each other.Comment: PDF-LaTeX, 34 pages, 2 mps figure

    Quivers from Matrix Factorizations

    Full text link
    We discuss how matrix factorizations offer a practical method of computing the quiver and associated superpotential for a hypersurface singularity. This method also yields explicit geometrical interpretations of D-branes (i.e., quiver representations) on a resolution given in terms of Grassmannians. As an example we analyze some non-toric singularities which are resolved by a single CP1 but have "length" greater than one. These examples have a much richer structure than conifolds. A picture is proposed that relates matrix factorizations in Landau-Ginzburg theories to the way that matrix factorizations are used in this paper to perform noncommutative resolutions.Comment: 33 pages, (minor changes

    The Breakdown of Topology at Small Scales

    Full text link
    We discuss how a topology (the Zariski topology) on a space can appear to break down at small distances due to D-brane decay. The mechanism proposed coincides perfectly with the phase picture of Calabi-Yau moduli spaces. The topology breaks down as one approaches non-geometric phases. This picture is not without its limitations, which are also discussed.Comment: 12 pages, 2 figure

    Solitons in Seiberg-Witten Theory and D-branes in the Derived Category

    Get PDF
    We analyze the "geometric engineering" limit of a type II string on a suitable Calabi-Yau threefold to obtain an N=2 pure SU(2) gauge theory. The derived category picture together with Pi-stability of B-branes beautifully reproduces the known spectrum of BPS solitons in this case in a very explicit way. Much of the analysis is particularly easy since it can be reduced to questions about the derived category of CP1.Comment: 20 pages, LaTex2

    The web of Calabi-Yau hypersurfaces in toric varieties

    Get PDF
    Recent results on duality between string theories and connectedness of their moduli spaces seem to go a long way toward establishing the uniqueness of an underlying theory. For the large class of Calabi-Yau 3-folds that can be embedded as hypersurfaces in toric varieties the proof of mathematical connectedness via singular limits is greatly simplified by using polytopes that are maximal with respect to certain single or multiple weight systems. We identify the multiple weight systems occurring in this approach. We show that all of the corresponding Calabi-Yau manifolds are connected among themselves and to the web of CICY's. This almost completes the proof of connectedness for toric Calabi-Yau hypersurfaces.Comment: TeX, epsf.tex; 24 page

    Moduli Spaces for D-branes at the Tip of a Cone

    Full text link
    For physicists: We show that the quiver gauge theory derived from a Calabi-Yau cone via an exceptional collection of line bundles on the base has the original cone as a component of its classical moduli space. For mathematicians: We use data from the derived category of sheaves on a Fano surface to construct a quiver, and show that its moduli space of representations has a component which is isomorphic to the anticanonical cone over the surface.Comment: 8 page
    corecore