96 research outputs found

    Molecular Characterization of a Patient Presumed to Have Prader-Willi Syndrome

    Get PDF
    Prader-Willi syndrome (PWS) is caused by the loss of RNA expression from an imprinted region on chromosome 15 that includes SNRPN, SNORD115, and SNORD116. Currently, there are no mouse models that faithfully reflect the human phenotype and investigations rely on human post-mortem material. During molecular characterization of tissue deposited in a public brain bank from a patient diagnosed with Prader-Willi syndrome, we found RNA expression from SNRPN, SNORD115, and SNORD116 which does not support a genetic diagnosis of Prader-Willi syndrome. The patient was a female, Caucasian nursing home resident with history of morbid obesity (BMI 56.3) and mental retardation. She died at age of 56 from pulmonary embolism. SNORD115 and SNORD116 are unexpectedly stable in post mortem tissue and can be used for post-mortem diagnosis. Molecular characterization of PWS tissue donors can confirm the diagnosis and identify those patients that have been misdiagnosed

    A Sensitive Branched DNA HIV-1 Signal Amplification Viral Load Assay with Single Day Turnaround

    Get PDF
    Branched DNA (bDNA) is a signal amplification technology used in clinical and research laboratories to quantitatively detect nucleic acids. An overnight incubation is a significant drawback of highly sensitive bDNA assays. The VERSANT® HIV-1 RNA 3.0 Assay (bDNA) (“Versant Assay”) currently used in clinical laboratories was modified to allow shorter target incubation, enabling the viral load assay to be run in a single day. To dramatically reduce the target incubation from 16–18 h to 2.5 h, composition of only the “Lysis Diluent” solution was modified. Nucleic acid probes in the assay were unchanged. Performance of the modified assay (assay in development; not commercially available) was evaluated and compared to the Versant Assay. Dilution series replicates (>950 results) were used to demonstrate that analytical sensitivity, linearity, accuracy, and precision for the shorter modified assay are comparable to the Versant Assay. HIV RNA-positive clinical specimens (n = 135) showed no significant difference in quantification between the modified assay and the Versant Assay. Equivalent relative quantification of samples of eight genotypes was demonstrated for the two assays. Elevated levels of several potentially interfering endogenous substances had no effect on quantification or specificity of the modified assay. The modified assay with drastically improved turnaround time demonstrates the viability of signal-amplifying technology, such as bDNA, as an alternative to the PCR-based assays dominating viral load monitoring in clinical laboratories. Highly sensitive bDNA assays with a single day turnaround may be ideal for laboratories with especially stringent cost, contamination, or reliability requirements

    Analytical solution of relativistic three-body bound systems

    No full text
    In this paper we have investigated in detail the relativistic three-body bound states. We carried out calculations in six-dimensional representation on the basis of the Jacobi coordinates. The obtained second-degree differential equation is solved by using the Nikiforov-Uvarov method and the energy eigenvalues are obtained. Consequently we obtained the binding energy of the three-nucleon bound system. Here we used the generalized Woods-Saxon spin-independent potential in our calculations. The dependence of the three-body binding energy on the potential parameters is also investigated

    Thermal performance of different working fluids in a dual diameter circular heat pipe

    Get PDF
    In this paper, heat transfer performance of a 40 cm-length circular heat pipe with screen mesh wick is experimentally investigated. This heat pipe is made of copper with two diameters; larger in the evaporator and smaller in the adiabatic and condenser. Three different liquids including water, methanol, and ethanol are separately filled within the heat pipe. Low heat fluxes are applied (up to 2500 W/m2) in the evaporator and constant temperature water bath is used at three levels including 15, 25, and 35 °C in the condenser. Results demonstrate that higher heat transfer coefficients are obtained for water and ethanol in comparison with methanol. Furthermore, increasing heat flux increases the evaporator heat transfer coefficient. For the case of methanol, some degradation in heat transfer coefficient is occurred at high heat fluxes which can be due to the surface dryout effect. Increasing the inclination angle decreases the heat pipe thermal resistance

    A practical approach for redesigning system engineering processes

    Full text link
    This paper describes the methodology of applying Business Process Reengineering and Total Quality Management principles to a model a telecommunications service and infrastructure provider company. By applying these principles to existing processes this paper aims to provide redefined and reengineered processes for consideration of implementation into the company's business model. The processes that this paper is focusing on are purely engineering based processes and as such, do not represent, change or consider processes outside of the engineering department. The overall aim of this paper is to demonstrate a typical use of methodology and ICT tools that can be used for training students in the improvement of engineering processes and to enable them to design a more streamlined and productive work environment. © 2012 IEEE
    corecore