16 research outputs found

    Electroanalysis may be used in the Vanillin Biotechnological Production

    Get PDF
    This study shows that electroanalysis may be used in vanillin biotechnological production. As a matter of fact, vanillin and some molecules implicated in the process like eugenol, ferulic acid, and vanillic acid may be oxidized on electrodes made of different materials (gold, platinum, glassy carbon). By a judicious choice of the electrochemical method and the experimental conditions the current intensity is directly proportional to the molecule concentrations in a range suitable for the biotechnological process. So, it is possible to imagine some analytical strategies to control some steps in the vanillin biotechnological production: by sampling in the batch reactor during the process, it is possible to determine out of line the concentration of vanillin, eugenol, ferulic acid, and vanillic acid with a gold rotating disk electrode, and low concentration of vanillin with addition of hydrazine at an amalgamated electrode. Two other possibilities consist in the introduction of electrodes directly in the batch during the process; the first one with a gold rotating disk electrode using linear sweep voltammetry and the second one requires three gold rotating disk electrodes held at different potentials for chronoamperometry. The last proposal is the use of ultramicroelectrodes in the case when stirring is not possible

    Generation of flavors and fragrances through biotransformation and de novo synthesis

    Get PDF
    Flavors and fragrances are the result of the presence of volatile and non-volatile compounds, appreciated mostly by the sense of smell once they usually have pleasant odors. They are used in perfumes and perfumed products, as well as for the flavoring of foods and beverages. In fact the ability of the microorganisms to produce flavors and fragrances has been described for a long time, but the relationship between the flavor formation and the microbial growth was only recently established. After that, efforts have been put in the analysis and optimization of food fermentations that led to the investigation of microorganisms and their capacity to produce flavors and fragrances, either by de novo synthesis or biotransformation. In this review, we aim to resume the recent achievements in the production of the most relevant flavors by bioconversion/biotransformation or de novo synthesis, its market value, prominent strains used, and their production rates/maximum concentrations.We would like to thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469 unit, COMPETE 2020 (POCI-01-0145FEDER-006684), and BiotecNorte operation (NORTE-01-0145FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    Evaluation of Streptomyces spp. against Fusarium oxysporum f. sp. ciceris for the management of chickpea wilt

    No full text
    In this study, about 112 isolates of Streptomyces were isolated from chickpea rhizospheric soils. Among the isolated strains, five showed strong inhibitory effects against chickpea Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris in vitro using plate assay and selected for further studies. The selected strains were identified as Streptomyces spp. based on morphological and biochemical characterization as well as 16S rDNA sequences analysis. Our results assigned them to strains related to genus of Streptomyces. In vitro, antagonistic effects of Streptomyces strains against the disease were evaluated through the dual-culture method, volatile and non-volatile metabolites, siderophore, protease and chitinase production. All bacterial strains inhibited mycelial growth of the pathogen ranging from 26 to 44.2% in dual culture assay. The non-volatile extract of five of the Streptomyces strains inhibited more than 50% growth of the pathogen, whereas volatile compounds were less effective on mycelial growth inhibition (20.2 to 33.4%). The ability of the biocontrol agents to produce siderophore and protease were varied, whereas, production of chitinase was detected for all strains. Results of the greenhouse assay indicated that all biocontrol agents reduced disease severity (ranging from 38.7 to 54.8%). Accordingly, strain KS62 showed higher control efficacy (54.8%). In addition, the biomass of chickpea plants (plant height and dry weight) significantly increased in plants treated with Streptomyces strains compared to non-bacterized control. The results of this study showed that it may be possible to manage chickpea Fusarium wilt disease effectively by using Streptomyces species, as biocontrol agents. Therefore, evaluating their efficiency under field conditions is needed

    Interaction of Epigallocatechin Gallate and Quercetin with Spike Glycoprotein (S-Glycoprotein) of SARS-CoV-2: In Silico Study

    No full text
    Severe acute respiratory syndrome (SARS)-CoV-2 from the family Coronaviridae is the cause of the outbreak of severe pneumonia, known as coronavirus disease 2019 (COVID-19), which was first recognized in 2019. Various potential antiviral drugs have been presented to hinder SARS-CoV-2 or treat COVID-19 disease. Side effects of these drugs are among the main complicated issues for patients. Natural compounds, specifically primary and secondary herbal metabolites, may be considered as alternative options to provide therapeutic activity and reduce cytotoxicity. Phenolic materials such as epigallocatechin gallate (EGCG, polyphenol) and quercetin have shown antibacterial, antifungal, antiviral, anticancer, and anti-inflammatory effects in vitro and in vivo. Therefore, in this study, molecular docking was applied to measure the docking property of epigallocatechin gallate and quercetin towards the transmembrane spike (S) glycoprotein of SARS-CoV-2. Results of the present study showed Vina scores of −9.9 and −8.3 obtained for EGCG and quercetin by CB-Dock. In the case of EGCG, four hydrogen bonds of OG1, OD2, O3, and O13 atoms interacted with the Threonine (THR778) and Aspartic acid (ASP867) amino acids of the spike glycoprotein (6VSB). According to these results, epigallocatechin gallate and quercetin can be considered potent therapeutic compounds for addressing viral diseases
    corecore