53 research outputs found

    Critical currents in vicinal YBa2_2Cu3_3O7−δ_{7-\delta} films

    Full text link
    Most measurements of critical current densities in YBa2_2Cu3_3O7−δ_{7-\delta} thin films to date have been performed on films where the \textit{c}-axis is grown normal to the film surface. With such films, the analysis of the dependence of jcj_c on the magnetic field angle is complex. The effects of extrinsic contributions to the angular field dependence of jcj_c, such as the measurement geometry and disposition of pinning centres, are convoluted with those intrinsically due to the anisotropy of the material. As a consequence of this, it is difficult to distinguish between proposed FLL structure models on the basis of angular critical current density measurements on \textit{c}-axis films. Films grown on mis-cut (vicinal) substrates have a reduced measurement symmetry and thus provide a greater insight into the critical current anisotropy. In this paper previous descriptions of the magnetic field angle dependence of jcj_c in YBa2_2Cu3_3O7−δ_{7-\delta} are reviewed. Measurements on YBa2_2Cu3_3O7−δ_{7-\delta} thin films grown on a range of vicinal substrates are presented and the results interpreted in terms of the structure and dimensionality of the FLL in YBa2_2Cu3_3O7−δ_{7-\delta}. There is strong evidence for a transition in the structure of the flux line lattice depending on magnetic field magnitude, orientation and temperature. As a consequence, a simple scaling law can not, by itself, describe the observed critical current anisotropy in YBa2_2Cu3_3O7−δ_{7-\delta}. The experimentally obtained jc(θ)j_c(\theta) behaviour of YBCO is successfully described in terms of a kinked vortex structure for fields applied near parallel to the \textit{a-b} planes.Comment: 10 pages, 12 figures, Submitted to PR

    Erratum: Corrigendum: nanoSQUID operation using kinetic rather than magnetic induction

    No full text
    • …
    corecore