8 research outputs found

    Stat3 Activates the Receptor Tyrosine Kinase Like Orphan Receptor-1 Gene in Chronic Lymphocytic Leukemia Cells

    Get PDF
    BACKGROUND: The receptor tyrosine kinase like orphan receptor (ROR)-1 gene is overexpressed in chronic lymphocytic leukemia (CLL). Because Stat3 is constitutively activated in CLL and sequence analysis revealed that the ROR1 promoter harbors gamma-interferon activation sequence-like elements typically activated by Stat3, we hypothesized that Stat3 activates ROR1. METHODOLOGY/PRINCIPAL FINDINGS: Because IL-6 induced Stat3 phosphorylation and upregulated Ror1 protein levels in MM1 cells, we used these cells as a model. We transfected MM1 cells with truncated ROR1 promoter luciferase reporter constructs and found that IL-6 induced luciferase activity of ROR1-195 and upstream constructs. Co-transfection with Stat3 siRNA reduced the IL-6-induced luciferase activity, suggesting that IL-6 induced luciferase activity by activating Stat3. EMSA and the ChIP assay confirmed that Stat3 binds ROR1, and EMSA studies identified two Stat3 binding sites. In CLL cells, EMSA and ChIP studies determined that phosphorylated Stat3 bound to the ROR1 promoter at those two ROR1 promoter sites, and ChIP analysis showed that Stat3 co-immunoprecipitated DNA of STAT3, ROR1, and several Stat3-regulated genes. Finally, like STAT3-siRNA in MM1 cells, STAT3-shRNA downregulated STAT3, ROR1, and STAT3-regulated genes and Stat3 and Ror1 protein levels in CLL cells. CONCLUSION/SIGNIFICANCE: Our data suggest that constitutively activated Stat3 binds to the ROR1 promoter and activates ROR1 in CLL cells

    Atiprimod blocks STAT3 phosphorylation and induces apoptosis in multiple myeloma cells

    Get PDF
    Multiple myeloma (MM) accounts for 1 % of all cancer deaths. Although treated aggressively, almost all myelomas eventually recur and become resistant to treatment. Atiprimod (2-(3-Diethylaminopropyl)-8,8-dipropyl-2-azaspiro[4,5] decane dimaleate) has exerted anti-inflammatory activities and inhibited oeteoclast-induced bone resorption in animal models and been well tolerated in patients with rheumatoid arthritis in phase I clinical trials. Therefore, we investigated its activity in MM cells and its mechanism of action. We found that Atiprimod inhibited proliferation of the myeloma cell lines U266-B1, OCI-MY5, MM-1, and MM-1R in a time- and dose-dependent manner. Atiprimod blocked U266-B1 myeloma cells in the G0/G1 phase, preventing cell cycle progression. Furthermore, Atiprimod inhibited signal transducer and activator of transcription (STAT) 3 activation, blocking the signalling pathway of interleukin-6, which contributes to myeloma cell proliferation and survival, and downregulated the antiapoptotic proteins Bcl-2, Bcl-XL, and Mcl-1. Incubation of U266-B1 myeloma cells with Atiprimod induced apoptosis through the activation of caspase 3 and subsequent cleavage of the DNA repair enzyme poly(adenosine diphosphate-ribose) polymerase. Finally, Atiprimod suppressed myeloma colony-forming cell proliferation in fresh marrow cells from five patients with newly diagnosed MM in a dose-dependent fashion. These data suggest that Atiprimod has a role in future therapies for MM

    Dietary compounds as potent inhibitors of the signal transducers and activators of transcription (STAT) 3 regulatory network

    No full text
    Signal transducers and activators of transcription (STAT) proteins were described as a family of latent cytosolic transcription factors whose activation is dependent on phosphorylation via growth factor- and cytokine-membrane receptors including interferon and interleukin, or by non-receptor intracellular tyrosine kinases, including Src. A vast majority of natural substances are capable of modulating mitogenic signals, cell survival, apoptosis, cell cycle regulation, angiogenesis as well as processes involved in metastasis development. The inhibition of STAT3 phosphorylation by natural and dietary compounds leads to decreased protein expression of STAT3 targets essentially involved in regulation of the cell cycle and apoptotic cell death. This review details the cell signaling pathways involving STAT transcription factors as well as the corresponding compounds from nature able to interfere with this regulatory system in human cancer

    Bone marrow microenvironment and the identification of new targets for myeloma therapy

    No full text

    Therapeutic modulators of STAT signalling for human diseases

    No full text
    corecore