26 research outputs found
Activation of Epidermal Growth Factor Receptor Is Required for NTHi-Induced NF-κB-Dependent Inflammation
Inflammation is a hallmark of many serious human diseases. Nontypeable Haemophilus influenzae (NTHi) is an important human pathogen causing respiratory tract infections in both adults and children. NTHi infections are characterized by inflammation, which is mainly mediated by nuclear transcription factor-kappa B (NF-κB)-dependent production of proinflammatory mediators. Epidermal growth factor receptor (EGFR) has been shown to play important roles in regulating diverse biological processes, including cell growth, differentiation, apoptosis, adhesion, and migration. Its role in regulating NF-κB activation and inflammation, however, remains largely unknown.In the present study, we demonstrate that EGFR plays a vital role in NTHi-induced NF-κB activation and the subsequent induction of proinflammatory mediators in human middle ear epithelial cells and other cell types. Importantly, we found that AG1478, a specific tyrosine kinase inhibitor of EGFR potently inhibited NTHi-induced inflammatory responses in the middle ears and lungs of mice in vivo. Moreover, we found that MKK3/6-p38 and PI3K/Akt signaling pathways are required for mediating EGFR-dependent NF-κB activation and inflammatory responses by NTHi.Here, we provide direct evidence that EGFR plays a critical role in mediating NTHi-induced NF-κB activation and inflammation in vitro and in vivo. Given that EGFR inhibitors have been approved in clinical use for the treatment of cancers, current studies will not only provide novel insights into the molecular mechanisms underlying the regulation of inflammation, but may also lead to the development of novel therapeutic strategies for the treatment of respiratory inflammatory diseases and other inflammatory diseases
Elevated H3K18 acetylation in airway epithelial cells of asthmatic subjects
Background: Epigenetic adjustments of the chromatin architecture through histone modifications are reactive to the environment and can establish chromatin states which are permissive or repressive to gene expression. Epigenetic regulation of gene expression is cell specific and therefore, it is important to understand its contribution to individual cellular responses in tissues like the airway epithelium which forms the mucosal barrier to the inhaled environment within the lung. The airway epithelium of asthmatics is abnormal with dysregulation of genes such as epidermal growth factor receptor (EGFR), the ΔN isoform of the transcription factor p63 (ΔNp63), and signal transducer and activator of transcription 6 (STAT6), integral to differentiation, proliferation, and inflammation. It is important to establish in diseases like asthma how histone modifications affect tissue responses such as proliferation and differentiation. Objectives: To characterize the global histone acetylation and methylation status in the epithelium of asthmatic compared to healthy subjects and to identify the impact of these variations on genes involved in epithelial functions. Methods: Whole lungs were obtained from healthy and asthmatic subjects (n = 6) from which airway epithelial cells (AECs) were isolated and airway sections were taken for analysis of histone lysine acetylation and methylation by immunohistochemistry. AECs were subjected to chromatin immunoprecipitation (ChIP) using anti-H3K18ac and anti-H3K4me2 antibodies followed by RT-PCR targeting ΔNp63, EGFR, and STAT6. AECs were also treated with TSA and changes in ΔNp63, EGFR, and STAT6 expression were determined. Results: We identified an increase in the acetylation of lysine 18 on histone 3 (H3K18ac) and trimethylation of lysine 9 on histone 3 (H3K9me3) in the airway epithelium of asthmatic compared to healthy subjects. We found increased association of H3K18ac around the transcription start site of ΔNp63, EGFR, and STAT6 in AECs of asthmatics. However, we were unable to modify the expression of these genes with the use of the HDAC inhibitor TSA in healthy subjects. Discussion: The airway epithelium from asthmatic subjects displays increased acetylation of H3K18 and association of this mark around the transcription start site of ΔNp63, EGFR, and STAT6. These findings suggest a complex interaction between histone modifications and gene regulation in asthma
Enhancement of goblet cell hyperplasia and airway hyperresponsiveness by salbutamol in a rat model of atopic asthma
BACKGROUND—Goblet cell hyperplasia (GCH) is a prominent feature in animal models of atopic asthma produced by immunisation and following multiple challenges with antigens. The aim of this study was to examine the effect of a β(2) agonist on the development of GCH induced by the immune response.
METHODS—Brown Norway rats were immunised and challenged with an aerosol of ovalbumin for four weeks. Salbutamol (0.5 mg/kg/day) or vehicle was continuously delivered for the four weeks using a subcutaneously implanted osmotic minipump. The density of goblet cells, other morphological changes, and airway responsiveness to methacholine were evaluated 24 hours after the final challenge.
RESULTS—Treatment with salbutamol induced a more than twofold increase in the mean (SE) number of goblet cells (53.7 (7.3) vs 114.5(11.8) cells/10(3) epithelial cells, p<0.01) while it did not significantly influence airway wall thickening and eosinophilic infiltration. Airway responsiveness to methacholine expressed as the logarithmic value of the concentration of methacholine required to generate a 50% increase in airway pressure (logPC(150)Mch) was also enhanced by the β(2) agonist (-0.56 (0.21) vs -0.95 (0.05), p<0.05). Additional experiments revealed that the same dose of the β(2) agonist alone did not cause GCH in non-immunised rats and that the enhancement of GCH by salbutamol was completely abolished by simultaneous treatment with methylprednisolone (0.5 mg/kg/day).
CONCLUSIONS—These data suggest that salbutamol enhances goblet cell hyperplasia and airway hyperresponsiveness in this rat model of atopic asthma.