5 research outputs found

    Local environment rather than past climate determines community composition of mountain stream macroinvertebrates across Europe

    No full text
    Community assembly is determined by a combination of historical events and contemporary processes that are difficult to disentangle, but eco‐evolutionary mechanisms may be uncovered by the joint analysis of species and genetic diversity across multiple sites. Mountain streams across Europe harbour highly diverse macroinvertebrate communities whose composition and turnover (replacement of taxa) among sites and regions remain poorly known. We studied whole‐community biodiversity within and among six mountain regions along a latitudinal transect from Morocco to Scandinavia at three levels of taxonomic hierarchy: genus, species and haplotypes. Using DNA barcoding of four insect families (>3100 individuals, 118 species) across 62 streams, we found that measures of local and regional diversity and intraregional turnover generally declined slightly towards northern latitudes. However, at all hierarchical levels we found complete (haplotype) or high (species, genus) turnover among regions (and even among sites within regions), which counters the expectations of Pleistocene postglacial northward expansion from southern refugia. Species distributions were mostly correlated with environmental conditions, suggesting a strong role of lineage‐ or species‐specific traits in determining local and latitudinal community composition, lineage diversification and phylogenetic community structure (e.g., loss of Coleoptera, but not Ephemeroptera, at northern sites). High intraspecific genetic structure within regions, even in northernmost sites, reflects species‐specific dispersal and demographic histories and indicates postglacial migration from geographically scattered refugia, rather than from only southern areas. Overall, patterns were not strongly concordant across hierarchical levels, but consistent with the overriding influence of environmental factors determining community composition at the species and genus levels

    The recovery of European freshwater biodiversity has come to a halt

    Get PDF
    Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss(1). Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity(2). Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity
    corecore