55 research outputs found
Process Enhancement of Hydrogen And Methane Production from Palm Oil Mill Effluent Using Two-Stage Thermophilic and Mesophilic Fermentation
The present study investigates the technical possibilities of hydrogen and methane production from palm oil mill effluent (POME). The production was carried out in two stage (thermophilic and mesophilic) continuous phase with recirculation of the digestate sludge. The reactors used for the present study, up-flow anaerobic sludge blanket reactor (UASB) and continuous stirred tank reactor (CSTR) were operated under thermophilic and mesophilic conditions, respectively. The UASB reactor was operated at 2 days hydraulic retention time (HRT) and 75 kgCOD m3 dâ1 organic loading rate (OLR) for hydrogen production. The effluents from UASB reactor containing mainly with acetate and butyrate were directly fed into CSTR for methane production and 5 days HRT was maintained. Both UASB and CSTR reactors were operated for 120 days continuously, and a stable production of the hydrogen and methane was obtained in the separate reactors. The maximum hydrogen and methane production rate achieved was 1.92 L H2 Lâdâ1 and 3.2 L CH4 Lâ1 dâ1, respectively. The cumulative hydrogen and methane yields were 215 L H2/kgCODâ1 and 320 L CH4/kgCODâ1, respectively with the total COD removal efficiency of 94%. Thermoanaerobacterium species was dominant in hydrogen reactor, while methane reactor was dominated with Methanobrevibacter sp
Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding
<p>Abstract</p> <p>Background</p> <p>Simultaneous saccharification and co-fermentation (SSCF) has been recognized as a feasible option for ethanol production from xylose-rich lignocellulosic materials. To reach high ethanol concentration in the broth, a high content of water-insoluble solids (WIS) is needed, which creates mixing problems and, furthermore, may decrease xylose uptake. Feeding of substrate has already been proven to give a higher xylose conversion than a batch SSCF. In the current work, enzyme feeding, in addition to substrate feeding, was investigated as a means of enabling a higher WIS content with a high xylose conversion in SSCF of a xylose-rich material. A recombinant xylose-fermenting strain of <it>Saccharomyces cerevisiae </it>(TMB3400) was used for this purpose in fed-batch SSCF experiments of steam-pretreated wheat straw.</p> <p>Results</p> <p>By using both enzyme and substrate feeding, the xylose conversion in SSCF could be increased from 40% to 50% in comparison to substrate feeding only. In addition, by this design of the feeding strategy, it was possible to process a WIS content corresponding to 11% in SSCF and obtain an ethanol yield on fermentable sugars of 0.35 g g<sup>-1</sup>.</p> <p>Conclusion</p> <p>A combination of enzyme and substrate feeding was shown to enhance xylose uptake by yeast and increase overall ethanol yield in SSCF. This is conceptually important for the design of novel SSCF processes aiming at high-ethanol titers. Substrate feeding prevents viscosity from becoming too high and thereby allows a higher total amount of WIS to be added in the process. The enzyme feeding, furthermore, enables keeping the glucose concentration low, which kinetically favors xylose uptake and results in a higher xylose conversion.</p
Stress modulation as a means to improve yeasts for lignocellulose bioconversion
The second-generation (2G) fermentation environment for lignocellulose conversion presents unique challenges to the fermentative organism that do not necessarily exist in other industrial fermentations. While extreme osmotic, heat, and nutrient starvation stresses are observed in sugar- and starch-based fermentation environments, additional pre-treatment-derived inhibitor stress,
potentially exacerbated by stresses such as pH and product tolerance, exist in the 2G environment. Furthermore, in a consolidated
bioprocessing (CBP) context, the organism is also challenged to secrete enzymes that may themselves lead to unfolded protein
response and other stresses. This review will discuss responses of the yeast Saccharomyces cerevisiae to 2G-specific stresses and
stress modulation strategies that can be followed to improve yeasts for this application. We also explore published âomics data
and discuss relevant rational engineering, reverse engineering, and adaptation strategies, with the view of identifying genes or
alleles that will make positive contributions to the overall robustness of 2G industrial strains
- âŠ