10 research outputs found
Prolonged deficit of gamma oscillations in the peri-infarct cortex of mice after stroke
AbstractDays and weeks after an ischemic stroke, the peri-infarct area adjacent to the necrotic tissue exhibits very intense synaptic reorganization aimed at regaining lost functions. In order to enhance functional recovery, it is important to understand the mechanisms supporting neural repair and neuroplasticity in the cortex surrounding the lesion. Brain oscillations of the local field potential (LFP) are rhythmic fluctuations of neuronal excitability aimed at synchronizing neuronal activity to organize information processing and plasticity. Although the oscillatory activity of the brain has been probed after stroke in both animals and humans using electroencephalography (EEG), the latter is ineffective to precisely map the oscillatory changes in the peri-infarct zone where synaptic plasticity potential is high. Here, we worked on the hypothesis that brain oscillatory system is altered in the surviving peri-infarct cortex, which may slow down functional repair and reduce the capacity to recovery. In order to document the relevance of this hypothesis, oscillatory power was measured at various distances from the necrotic core at 7 and 21 days after a permanent cortical ischemia induced in mice. Delta and theta oscillations remained at a normal power in the peri-infarct cortex, in contrast to gamma oscillations that displayed a rapid decrease, the closer we get to the lesion core. A broadband increase of power was also observed in the homotopic contralateral sites. Thus, the proximal peri-infarct cortex could become a target of therapeutic interventions aimed at correcting the oscillatory regimen. These results argue for the usefulness of therapeutic intervention aimed at boosting gamma oscillations in order to improve post-stroke functional recovery.</jats:p
Concentration dependent dual effect of the endozepine ODN on neuronal spiking activity
AbstractEndozepines, known as the endogenous ligands of benzodiazepine-binding sites, include the diazepam binding inhibitor (DBI) and its processing products, the triakontatetraneuropeptide (TTN) and the octadecaneuropeptide (ODN). Despite indisputable evidences of the binding of ODN on GABAAR-BZ-binding sites, their action on this receptor lacks compelling electrophysiological observations, some studies reporting that ODN acts as a negative allosteric modulator (NAM) of GABAAR while others suggest the opposite (positive allosteric modulation, PAM effect). All these studies were carried out in vitro with various neuronal cell types. To further elucidate the role of ODN on neuronal excitability, we tested its effect in vivo in the cortex of the anesthetized mouse. Spontaneous neuronal spikes were recorded by the mean of an extracellular pipette in the vicinity of which ODN was micro-infused, either at high dose (10-5M) or low dose (10-11M). ODN at high dose induced a significant increase of neuronal spiking. This effect could be antagonized by the GABAAR-BZ-binding sites blocker flumazenil. In sharp contrast, at low concentration, ODN reduced neuronal spiking in a magnitude similar to GABA itself. Interestingly, this decrease of neuronal activity by low dose of ODN was not flumazenil dependent suggesting that this effect is mediated by another receptor. Finally, we show that astrocytes in culture, known to be stimulated by picomolar dose of ODN via a GPCR, increased their export of GABA when stimulated by low dose of ODN. Our results confirm the versatility of ODN in the control of GABA transmission, but suggest that its PAM-like effect is, at least in part, mediated via an astrocytic non-GABAAR ODN receptor.</jats:p
