10 research outputs found

    The Applications of Metaheuristics for Human Activity Recognition and Fall Detection Using Wearable Sensors: A Comprehensive Analysis

    No full text
    In this paper, we study the applications of metaheuristics (MH) optimization algorithms in human activity recognition (HAR) and fall detection based on sensor data. It is known that MH algorithms have been utilized in complex engineering and optimization problems, including feature selection (FS). Thus, in this regard, this paper used nine MH algorithms as FS methods to boost the classification accuracy of the HAR and fall detection applications. The applied MH were the Aquila optimizer (AO), arithmetic optimization algorithm (AOA), marine predators algorithm (MPA), artificial bee colony (ABC) algorithm, genetic algorithm (GA), slime mold algorithm (SMA), grey wolf optimizer (GWO), whale optimization algorithm (WOA), and particle swarm optimization algorithm (PSO). First, we applied efficient prepossessing and segmentation methods to reveal the motion patterns and reduce the time complexities. Second, we developed a light feature extraction technique using advanced deep learning approaches. The developed model was ResRNN and was composed of several building blocks from deep learning networks including convolution neural networks (CNN), residual networks, and bidirectional recurrent neural networks (BiRNN). Third, we applied the mentioned MH algorithms to select the optimal features and boost classification accuracy. Finally, the support vector machine and random forest classifiers were employed to classify each activity in the case of multi-classification and to detect fall and non-fall actions in the case of binary classification. We used seven different and complex datasets for the multi-classification case: the PAMMP2, Sis-Fall, UniMiB SHAR, OPPORTUNITY, WISDM, UCI-HAR, and KU-HAR datasets. In addition, we used the Sis-Fall dataset for the binary classification (fall detection). We compared the results of the nine MH optimization methods using different performance indicators. We concluded that MH optimization algorithms had promising performance in HAR and fall detection applications

    Aquila Optimizer: A novel meta-heuristic optimization algorithm

    Full text link
    This paper proposes a novel population-based optimization method, called Aquila Optimizer (AO), which is inspired by the Aquila's behaviors in nature during the process of catching the prey. Hence, the optimization procedures of the proposed AO algorithm are represented in four methods; selecting the search space by high soar with the vertical stoop, exploring within a diverge search space by contour flight with short glide attack, exploiting within a converge search space by low flight with slow descent attack, and swooping by walk and grab prey. To validate the new optimizer's ability to find the optimal solution for different optimization problems, a set of experimental series is conducted. For example, during the first experiment, AO is applied to find the solution of well-known 23 functions. The second and third experimental series aims to evaluate the AO's performance to find solutions for more complex problems such as thirty CEC2017 test functions and ten CEC2019 test functions, respectively. Finally, a set of seven real-world engineering problems are used. From the experimental results of AO that compared with well-known meta-heuristic methods, the superiority of the developed AO algorithm is observed. Matlab codes of AO are available at https://www.mathworks.com/matlabcentral/fileexchange/89381-aquila-optimizer-a-meta-heuristic-optimization-algorithm and Java codes are available at https://www.mathworks.com/matlabcentral/fileexchange/89386-aquila-optimizer-a-meta-heuristic-optimization-algorithm

    Human Activity Recognition Based on Embedded Sensor Data Fusion for the Internet of Healthcare Things

    No full text
    Nowadays, the emerging information technologies in smart handheld devices are motivating the research community to make use of embedded sensors in such devices for healthcare purposes. In particular, inertial measurement sensors such as accelerometers and gyroscopes embedded in smartphones and smartwatches can provide sensory data fusion for human activities and gestures. Thus, the concepts of the Internet of Healthcare Things (IoHT) paradigm can be applied to handle such sensory data and maximize the benefits of collecting and analyzing them. The application areas contain but are not restricted to the rehabilitation of elderly people, fall detection, smoking control, sportive exercises, and monitoring of daily life activities. In this work, a public dataset collected using two smartphones (in pocket and wrist positions) is considered for IoHT applications. Three-dimensional inertia signals of thirteen timestamped human activities such as Walking, Walking Upstairs, Walking Downstairs, Writing, Smoking, and others are registered. Here, an efficient human activity recognition (HAR) model is presented based on efficient handcrafted features and Random Forest as a classifier. Simulation results ensure the superiority of the applied model over others introduced in the literature for the same dataset. Moreover, different approaches to evaluating such models are considered, as well as implementation issues. The accuracy of the current model reaches 98.7% on average. The current model performance is also verified using the WISDM v1 dataset

    ResInformer: Residual Transformer-Based Artificial Time-Series Forecasting Model for PM2.5 Concentration in Three Major Chinese Cities

    No full text
    Many Chinese cities have severe air pollution due to the rapid development of the Chinese economy, urbanization, and industrialization. Particulate matter (PM2.5) is a significant component of air pollutants. It is related to cardiopulmonary and other systemic diseases because of its ability to penetrate the human respiratory system. Forecasting air PM2.5 is a critical task that helps governments and local authorities to make necessary plans and actions. Thus, in the current study, we develop a new deep learning approach to forecast the concentration of PM2.5 in three major cities in China, Beijing, Shijiazhuang, and Wuhan. The developed model is based on the Informer architecture, where the attention distillation block is improved with a residual block-inspired structure from efficient networks, and we named the model ResInformer. We use air quality index datasets that cover 98 months collected from 1 January 2014 to 17 February 2022 to train and test the model. We also test the proposed model for 20 months. The evaluation outcomes show that the ResInformer and ResInformerStack perform better than the original model and yield better forecasting results. This study’s methodology is easily adapted for similar efforts of fast computational modeling

    Boosting Arithmetic Optimization Algorithm with Genetic Algorithm Operators for Feature Selection: Case Study on Cox Proportional Hazards Model

    No full text
    Feature selection is a well-known prepossessing procedure, and it is considered a challenging problem in many domains, such as data mining, text mining, medicine, biology, public health, image processing, data clustering, and others. This paper proposes a novel feature selection method, called AOAGA, using an improved metaheuristic optimization method that combines the conventional Arithmetic Optimization Algorithm (AOA) with the Genetic Algorithm (GA) operators. The AOA is a recently proposed optimizer; it has been employed to solve several benchmark and engineering problems and has shown a promising performance. The main aim behind the modification of the AOA is to enhance its search strategies. The conventional version suffers from weaknesses, the local search strategy, and the trade-off between the search strategies. Therefore, the operators of the GA can overcome the shortcomings of the conventional AOA. The proposed AOAGA was evaluated with several well-known benchmark datasets, using several standard evaluation criteria, namely accuracy, number of selected features, and fitness function. Finally, the results were compared with the state-of-the-art techniques to prove the performance of the proposed AOAGA method. Moreover, to further assess the performance of the proposed AOAGA method, two real-world problems containing gene datasets were used. The findings of this paper illustrated that the proposed AOAGA method finds new best solutions for several test cases, and it got promising results compared to other comparative methods published in the literature
    corecore