53 research outputs found

    A bottleneck investigation at escalator entry at the Brisbane central train station

    Full text link
    © 2016 ATRF, Commonwealth of Australia. All rights reserved. Escalators are an essential for passenger’s movements through multi-level rail station concourse environments. Despite the access benefits that escalators provide, they can make travel time longer and pose some challenges when bottlenecks appear at entry. Studying the passenger behaviour of bottlenecks at escalator entrances is essential for planning, designing and control of engineering transportation systems. In this paper we investigate passenger route choice behaviour while approaching an escalator-stair infrastructure set at Brisbane Central train station. A model of an escalator entry bottleneck is formulated. The developed model can explain the queuing characteristics of the bottlenecks and can be readily used to predict congested state occurrence at escalator entry bottleneck. Accurate prediction of bottlenecks occurring around escalators and the estimation of escalator capacity are obtained based on real field data collected from Brisbane Central train station. Results have provided significant insights and computational tools for understanding many features of escalator bottlenecks. Remarkably, escalator capacity at bottleneck points affects the duration and severity of the congested period

    Thermal shock resistance of yttrium aluminium oxide Y3Al5O12 thermal barrier coating for titanium alloy

    Get PDF
    The high strength-to- weight ratio of titanium alloys allows their use in jet engines. However, their use is restricted by susceptibility to oxidation at high temperatures. In this study, the possibility of increasing the operating temperature of titanium alloys through using Yttrium Aluminum Oxide (YAG) as a thermal barrier coating material for Ti-6Al-4V substrate is studied. The study concludes that YAG can be utilized to increase the operating temperature of Ti-6Al-4V titanium alloy from around 350 °C to 800 °C due to its low thermal conductivity and phase stability up to its melting point. In addition, its lower oxygen diffusivity in comparison with the standard YSZ material will provide a better protection of the titanium substrate from oxidation. In this work, coating was created using atmospheric plasma spray. X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) were used to examine coatings' composition and structure. The coating was characterized by thermal shock test, Vickers hardness test and adhesion strength test. X-ray diffraction indicated that the coating was of a partially crystalline Y3Al5O12 composition. The coating was porous with excellent thermal shock resistance at 800 oC, with a Vickers micro-hardness of 331.35 HV and adhesion strength of 17.6 MPa

    Extrinsic Calibration of Camera and 2D Laser Sensors without Overlap

    No full text
    Extrinsic calibration of a camera and a 2D laser range finder (lidar) sensors is crucial in sensor data fusion applications; for example SLAM algorithms used in mobile robot platforms. The fundamental challenge of extrinsic calibration is when the camera-lidar sensors do not overlap or share the same field of view. In this paper we propose a novel and flexible approach for the extrinsic calibration of a camera-lidar system without overlap, which can be used for robotic platform self-calibration. The approach is based on the robot–world hand–eye calibration (RWHE) problem; proven to have efficient and accurate solutions. First, the system was mapped to the RWHE calibration problem modeled as the linear relationship AX = ZB , where X and Z are unknown calibration matrices. Then, we computed the transformation matrix B , which was the main challenge in the above mapping. The computation is based on reasonable assumptions about geometric structure in the calibration environment. The reliability and accuracy of the proposed approach is compared to a state-of-the-art method in extrinsic 2D lidar to camera calibration. Experimental results from real datasets indicate that the proposed approach provides better results with an L2 norm translational and rotational deviations of 314 mm and 0 . 12 ∘ respectively

    Clearance, Manufacturing Errors Effects on the Accuracy of the 3-RCC Spherical Parallel Manipulators

    No full text
    • …
    corecore