4 research outputs found

    The serpin SQN-5 is a dual mechanistic-class inhibitor of serine and cysteine proteinases

    No full text
    SQN-5 is a mouse serpin that is highly similar to the human serpins SCCA1 (SERPINB3) and SCCA2 (SERPINB4). Previous studies characterizing the biochemical activity of SQN-5 showed that this serpin, like SCCA2, inhibited the chymotrypsin-like enzymes mast cell chymase and cathepsin G. Using an expanded panel of papain-like cysteine proteinases, we now show that SQN-5, like SCCA1, inhibited cathepsins K, L, S, and V but not cathepsin B or H. These interactions were characterized by stoichiometries of inhibition that were nearly 1:1 and second-order rate constants of \u3e10(4) M(-1) s(-1). Reactive site loop (RSL) cleavage analysis showed that SQN-5 employed different reactive centers to neutralize the serine and cysteine proteinases. To our knowledge, this is the first serpin that serves as a dual inhibitor of both chymotrypsin-like serine and the papain-like cysteine proteinases by employing an RSL-dependent inhibitory mechanism. The ability of serpins to inhibit both serine and/or papain-like cysteine proteinases may not be a recent event in mammalian evolution. Phylogenetic studies suggested that the SCCA and SQN genes evolved from a common ancestor approximately 250-280 million years ago. When the fact that mammals and birds diverged approximately 310 million years ago is considered, an ancestral SCCA/SQN-like serpin with dual inhibitory activity may be present in many mammalian genomes

    The many faces of protease–protein inhibitor interaction

    No full text
    Proteases and their natural protein inhibitors are among the most intensively studied protein–protein complexes. There are about 30 structurally distinct inhibitor families that are able to block serine, cysteine, metallo- and aspartyl proteases. The mechanisms of inhibition can be related to the catalytic mechanism of protease action or include a mechanism-unrelated steric blockage of the active site or its neighborhood. The structural elements that are responsible for the inhibition most often include the N- or the C-terminus or exposed loop(s) either separately or in combination of several such elements. During complex formation, no major conformational changes are usually observed, but sometimes structural transitions of the inhibitor and enzyme occur. In many cases, convergent evolution, with respect to the inhibitors' parts that are responsible for the inhibition, can be inferred from comparisons of their structures or sequences, strongly suggesting that there are only limited ways to inhibit proteases by proteins
    corecore