529 research outputs found

    Beam Dynamics in High Intensity Cyclotrons Including Neighboring Bunch Effects: Model, Implementation and Application

    Full text link
    Space charge effects, being one of the most significant collective effects, play an important role in high intensity cyclotrons. However, for cyclotrons with small turn separation, other existing effects are of equal importance. Interactions of radially neighboring bunches are also present, but their combined effects has not yet been investigated in any great detail. In this paper, a new particle in cell based self-consistent numerical simulation model is presented for the first time. The model covers neighboring bunch effects and is implemented in the three-dimensional object-oriented parallel code OPAL-cycl, a flavor of the OPAL framework. We discuss this model together with its implementation and validation. Simulation results are presented from the PSI 590 MeV Ring Cyclotron in the context of the ongoing high intensity upgrade program, which aims to provide a beam power of 1.8 MW (CW) at the target destination

    Evolution of a beam dynamics model for the transport lines in a proton therapy facility

    Full text link
    Despite the fact that the first-order beam dynamics models allow an approximated evaluation of the beam properties, their contribution is essential during the conceptual design of an accelerator or beamline. However, during the commissioning some of their limitations appear in the comparison against measurements. The extension of the linear model to higher order effects is, therefore, demanded. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI) in Switzerland. To improve the performance of the facility, a more precise model was required and has been developed with the multi-particle open source beam dynamics code called OPAL (Object oriented Particle Accelerator Library). In OPAL, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g. degrader, collimators, scattering foils and air gaps) on the beam emittance and energy spread can be analysed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the OPAL model has been confirmed by numerous measurements.Comment: 17 pages, 19 figure

    Towards Quantitative Simulations of High Power Proton Cyclotrons

    Full text link
    PSI operates a cyclotron based high intensity proton accelerator routinely at an average beam power of 1.3MW. With this power the facility is at the worldwide forefront of high intensity proton accelerators. The beam current is practically limited by losses at extraction and the resulting activation of accelerator components. Further intensity upgrades and new projects aiming at an even higher average beam power, are only possible if the relative losses can be lowered in proportion, thus keeping absolute losses at a constant level. Maintaining beam losses at levels allowing hands-on maintenance is a primary challenge in any high power proton machine design and operation. In consequence, predicting beam halo at these levels is a great challenge and will be addressed in this paper. High power hadron driver have being used in many disciplines of science and, a growing interest in the cyclotron technology for high power hadron drivers are being observed very recently. This report will briefly introduce OPAL, a tool for precise beam dynamics simulations including 3D space charge. One of OPAL's flavors (OPAL-cycl) is dedicated to high power cyclotron modeling and is explained in greater detail. We then explain how to obtain initial conditions for our PSI Ring cyclotron which still delivers the world record in beam power of 1.3 MW continuous wave (cw). Several crucial steps are explained necessary to be able to predict tails at the level of 3\sigma ... 4\sigma in the PSI Ring cyclotron. We compare our results at the extraction with measurements, obtained with a 1.18 MW cw production beam. Based on measurement data, we develop a simple linear model to predict beam sizes of the extracted beam as a function of intensities and confirm the model with simulations.Comment: Corrections and new figur

    Options for the second Bunch Compressor Chicane of the CLIC Main Beam Line

    Get PDF
    For the second bunch compressor chicane at CLIC a maximum emittance growth of only 5% in the horizontal plane is allowed. The emittance growth is the conse- quence of incoherent and coherent synchrotron radiation emitted by the electrons along the chicane. Both effects are reviewed and various chicanes are compared in computer simulations. A chicane layout is found which preserves the emittance well within the specifications

    Electrical Detection of Spin Accumulation at a Ferromagnet-Semiconductor Interface

    Full text link
    We show that the accumulation of spin-polarized electrons at a forward-biased Schottky tunnel barrier between Fe and n-GaAs can be detected electrically. The spin accumulation leads to an additional voltage drop across the barrier that is suppressed by a small transverse magnetic field, which depolarizes the spins in the semiconductor. The dependence of the electrical accumulation signal on magnetic field, bias current, and temperature is in good agreement with the predictions of a drift-diffusion model for spin-polarized transport.Comment: Submitted to Phys. Rev. Let

    Cyclotrons as Drivers for Precision Neutrino Measurements

    Get PDF
    As we enter the age of precision measurement in neutrino physics, improved flux sources are required. These must have a well-defined flavor content with energies in ranges where backgrounds are low and cross section knowledge is high. Very few sources of neutrinos can meet these requirements. However, pion/muon and isotope decay-at-rest sources qualify. The ideal drivers for decay-at-rest sources are cyclotron accelerators, which are compact and relatively inexpensive. This paper describes a scheme to produce decay-at-rest sources driven by such cyclotrons, developed within the DAEdALUS program. Examples of the value of the high precision beams for pursuing Beyond Standard Model interactions are reviewed. New results on a combined DAEdALUS--Hyper-K search for CP-violation that achieve errors on the mixing matrix parameter of 4 degrees to 12 degrees are presented.Comment: This paper was invited by the journal Advances in High Energy Physics for their upcoming special issue on "Neutrino Masses and Oscillations," which will be published on the 100th anniversary of Pontecorvo's birt

    Strong spin relaxation length dependence on electric field gradients

    Full text link
    We discuss the influence of electrical effects on spin transport, and in particular the propagation and relaxation of spin polarized electrons in the presence of inhomogeneous electric fields. We show that the spin relaxation length strongly depends on electric field gradients, and that significant suppression of electron spin polarization can occur as a result thereof. A discussion in terms of a drift-diffusion picture, and self-consistent numerical calculations based on a Boltzmann-Poisson approach shows that the spin relaxation length in fact can be of the order of the charge screening length.Comment: 4 pages, 3 figures, to be presented at PASPSI
    • …
    corecore