42 research outputs found

    A massive Feynman integral and some reduction relations for Appell functions

    Full text link
    New explicit expressions are derived for the one-loop two-point Feynman integral with arbitrary external momentum and masses m12m_1^2 and m22m_2^2 in D dimensions. The results are given in terms of Appell functions, manifestly symmetric with respect to the masses mi2m_i^2. Equating our expressions with previously known results in terms of Gauss hypergeometric functions yields reduction relations for the involved Appell functions that are apparently new mathematical results.Comment: 19 pages. To appear in Journal of Mathematical Physic

    Large-n expansion for m-axial Lifshitz points

    Full text link
    The large-n expansion is developed for the study of critical behaviour of d-dimensional systems at m-axial Lifshitz points with an arbitrary number m of modulation axes. The leading non-trivial contributions of O(1/n) are derived for the two independent correlation exponents \eta_{L2} and \eta_{L4}, and the related anisotropy index \theta. The series coefficients of these 1/n corrections are given for general values of m and d with 0<m<d and 2+m/2<d<4+m/2 in the form of integrals. For special values of m and d such as (m,d)=(1,4), they can be computed analytically, but in general their evaluation requires numerical means. The 1/n corrections are shown to reduce in the appropriate limits to those of known large-n expansions for the case of d-dimensional isotropic Lifshitz points and critical points, respectively, and to be in conformity with available dimensionality expansions about the upper and lower critical dimensions. Numerical results for the 1/n coefficients of \eta_{L2}, \eta_{L4} and \theta are presented for the physically interesting case of a uniaxial Lifshitz point in three dimensions, as well as for some other choices of m and d. A universal coefficient associated with the energy-density pair correlation function is calculated to leading order in 1/n for general values of m and d.Comment: 28 pages, 3 figures. Submitted to: J. Phys. C: Solid State Phys., special issue dedicated to Lothar Schaefer on the occasion of his 60th birthday. V2: References added along with corresponding modifications in the text, corrected figure 3, corrected typo

    Compatibility of 1/n and epsilon expansions for critical exponents at m-axial Lifshitz points

    Full text link
    The critical behaviour of d-dimensional n-vector models at m-axial Lifshitz points is considered for general values of m in the large-n limit. It is proven that the recently obtained large-N expansions [J. Phys.: Condens. Matter 17, S1947 (2005)] of the correlation exponents \eta_{L2}, \eta_{L4} and the related anisotropy exponent \theta are fully consistent with the dimensionality expansions to second order in \epsilon=4+m/2-d [Phys. Rev. B 62, 12338 (2000); Nucl. Phys. B 612, 340 (2001)] inasmuch as both expansions yield the same contributions of order \epsilon^2/n.Comment: 8 pages, submitted to J. Phys.

    Influence of long-range correlated quenched disorder on the adsorption of long flexible polymer chains on a wall

    Full text link
    The process of adsorption on a planar wall of long-flexible polymer chains in the medium with quenched long-range correlated disorder is investigated. We focus on the case of correlations between defects or impurities that decay according to the power-low x−a x^{-a} for large distances xx, where x=(r,z){\bf x}=({\bf r},z). Field theoretical approach in d=4−ϔd=4-\epsilon and directly in d=3d=3 dimensions up to one-loop order for the semi-infinite âˆŁÏ•âˆŁ4|\phi|^4 m-vector model (in the limit m→0m\to 0) with a planar boundary is used. The whole set of surface critical exponents at the adsorption threshold T=TaT=T_a, which separates the nonadsorbed region from the adsorbed one is obtained. Moreover, we calculate the crossover critical exponent Ί\Phi and the set of exponents associated with them. We perform calculations in a double Ï”=4−d\epsilon=4-d and ÎŽ=4−a\delta=4-a expansion and also for a fixed dimension d=3d=3, up to one-loop order for different values of the correlation parameter 2<a≀32<a\le 3. The obtained results indicate that for the systems with long-range correlated quenched disorder the new set of surface critical exponents arises. All the surface critical exponents depend on aa. Hence, the presence of long-range correlated disorder influences the process of adsorption of long-flexible polymer chains on a wall in a significant way.Comment: 4 figures, 2 table

    Surface critical behavior of random systems at the ordinary transition

    Full text link
    We calculate the surface critical exponents of the ordinary transition occuring in semi-infinite, quenched dilute Ising-like systems. This is done by applying the field theoretic approach directly in d=3 dimensions up to the two-loop approximation, as well as in d=4−ϔd=4-\epsilon dimensions. At d=4−ϔd=4-\epsilon we extend, up to the next-to-leading order, the previous first-order results of the Ï”\sqrt{\epsilon} expansion by Ohno and Okabe [Phys.Rev.B 46, 5917 (1992)]. In both cases the numerical estimates for surface exponents are computed using Pade approximants extrapolating the perturbation theory expansions. The obtained results indicate that the critical behavior of semi-infinite systems with quenched bulk disorder is characterized by the new set of surface critical exponents.Comment: 11 pages, 11 figure
    corecore