91 research outputs found

    Symbiotic gap and semi-gap solitons in Bose-Einstein condensates

    Full text link
    Using the variational approximation and numerical simulations, we study one-dimensional gap solitons in a binary Bose-Einstein condensate trapped in an optical-lattice potential. We consider the case of inter-species repulsion, while the intra-species interaction may be either repulsive or attractive. Several types of gap solitons are found: symmetric or asymmetric; unsplit or split, if centers of the components coincide or separate; intra-gap (with both chemical potentials falling into a single bandgap) or inter-gap, otherwise. In the case of the intra-species attraction, a smooth transition takes place between solitons in the semi-infinite gap, the ones in the first finite bandgap, and semi-gap solitons (with one component in a bandgap and the other in the semi-infinite gap).Comment: 5 pages, 9 figure

    One-dimensional superfluid Bose-Fermi mixture: mixing, demixing and bright solitons

    Full text link
    We study a ultra-cold and dilute superfluid Bose-Fermi mixture confined in a strictly one-dimensional atomic waveguide by using a set of coupled nonlinear mean-field equations obtained from the Lieb-Liniger energy density for bosons and the Gaudin-Yang energy density for fermions. We consider a finite Bose-Fermi inter-atomic strength g_{bf} and both periodic and open boundary conditions. We find that with periodic boundary conditions, i.e. in a quasi-1D ring, a uniform Bose-Fermi mixture is stable only with a large fermionic density. We predict that at small fermionic densities the ground state of the system displays demixing if g_{bf}>0 and may become a localized Bose-Fermi bright soliton for g_{bf}<0. Finally, we show, using variational and numerical solution of the mean-field equations, that with open boundary conditions, i.e. in a quasi-1D cylinder, the Bose-Fermi bright soliton is the unique ground state of the system with a finite number of particles, which could exhibit a partial mixing-demixing transition. In this case the bright solitons are demonstrated to be dynamically stable. The experimental realization of these Bose-Fermi bright solitons seems possible with present setups.Comment: 11 pages, 11 figure

    Gap solitons in superfluid boson-fermion mixtures

    Full text link
    Using coupled equations for the bosonic and fermionic order parameters, we construct families of gap solitons (GSs) in a nearly one-dimensional Bose-Fermi mixture trapped in a periodic optical-lattice (OL) potential, the boson and fermion components being in the states of the BEC and BCS superfluid, respectively. Fundamental GSs are compact states trapped, essentially, in a single cell of the lattice. Full families of such solutions are constructed in the first two bandgaps of the OL-induced spectrum, by means of variational and numerical methods, which are found to be in good agreement. The families include both intra-gap and inter-gap solitons, with the chemical potentials of the boson and fermion components falling in the same or different bandgaps, respectively.Nonfundamental states, extended over several lattice cells, are constructed too. The GSs are stable against strong perturbations.Comment: 9 pages, 14 figure

    Two phase transitions in (s+id)-wave Bardeen-Cooper-Schrieffer superconductivity

    Full text link
    We establish universal behavior in temperature dependencies of some observables in (s+id)(s+id)-wave BCS superconductivity in the presence of a weak ss wave. There also could appear a second second-order phase transition. As temperature is lowered past the usual critical temperature TcT_c, a less ordered superconducting phase is created in dd wave, which changes to a more ordered phase in (s+id)(s+id) wave at Tc1T_{c1} (<Tc< T_c). The presence of two phase transitions manifest in two jumps in specific heat at TcT_c and Tc1T_{c1}. The temperature dependencies of susceptibility, penetration depth, and thermal conductivity also confirm the new phase transition.Comment: 6 pages, 5 post-script figures

    Universal scaling in BCS superconductivity in two dimensions in non-s waves

    Full text link
    The solutions of a renormalized BCS model are studied in two space dimensions in ss, pp and dd waves for finite-range separable potentials. The gap parameter, the critical temperature TcT_c, the coherence length ξ\xi and the jump in specific heat at TcT_c as a function of zero-temperature condensation energy exhibit universal scalings. In the weak-coupling limit, the present model yields a small ξ\xi and large TcT_c appropriate to those for high-TcT_c cuprates. The specific heat, penetration depth and thermal conductivity as a function of temperature show universal scaling in pp and dd waves.Comment: 11 pages, LATEX, 4 postscript figures embedded using eps

    Superfluid Fermi-Fermi mixture: phase diagram, stability, and soliton formation

    Full text link
    We study the phase diagram for a dilute Bardeen-Cooper-Schrieffer superfluid Fermi-Fermi mixture (of distinct mass) at zero temperature using energy densities for the superfluid fermions in one (1D), two (2D), and three (3D) dimensions. We also derive the dynamical time-dependent nonlinear Euler-Lagrange equation satisfied by the mixture in one dimension using this energy density. We obtain the linear stability conditions for the mixture in terms of fermion densities of the components and the interspecies Fermi-Fermi interaction. In equilibrium there are two possibilities. The first is that of a uniform mixture of the two components, the second is that of two pure phases of two components without any overlap between them. In addition, a mixed and a pure phase, impossible in 1D and 2D, can be created in 3D. We also obtain the conditions under which the uniform mixture is stable from an energetic consideration. The same conditions are obtained from a modulational instability analysis of the dynamical equations in 1D. Finally, the 1D dynamical equations for the system are solved numerically and by variational approximation (VA) to study the bright solitons of the system for attractive interspecies Fermi-Fermi interaction in 1D. The VA is found to yield good agreement to the numerical result for the density profile and chemical potential of the bright solitons. The bright solitons are demonstrated to be dynamically stable. The experimental realization of these Fermi-Fermi bright solitons seems possible with present setups.Comment: 14 page

    Lattice Discretization in Quantum Scattering

    Get PDF
    The utility of lattice discretization technique is demonstrated for solving nonrelativistic quantum scattering problems and specially for the treatment of ultraviolet divergences in these problems with some potentials singular at the origin in two and three space dimensions. This shows that lattice discretization technique could be a useful tool for the numerical solution of scattering problems in general. The approach is illustrated in the case of the Dirac delta function potential.Comment: 9 page

    Quantum scattering in one dimension

    Get PDF
    A self-contained discussion of nonrelativistic quantum scattering is presented in the case of central potentials in one space dimension, which will facilitate the understanding of the more complex scattering theory in two and three dimensions. The present discussion illustrates in a simple way the concept of partial-wave decomposition, phase shift, optical theorem and effective-range expansion.Comment: 8 page

    Quenching of parapara-H2_2 with an ultra-cold anti-hydrogen atom Hˉ1s\bar{H}_{1s}

    Full text link
    In this work we report the results concerning calculations for quantum-mechanical rotational transitions in molecular hydrogen, H2_2, induced by an ultra-cold ground state anti-hydrogen atom Hˉ1s\bar{H}_{1s}. The calculations are accomplished using a non-reactive close-coupling quantum-mechanical approach. The H2_2 molecule is treated as a rigid rotor. The total elastic scattering cross section σel(ϵ)\sigma_{el}(\epsilon) at energy ϵ\epsilon, state-resolved rotational transition cross sections σjj(ϵ)\sigma_{jj'}(\epsilon) between states jj and jj' and corresponding thermal rate coefficients kjj(T)k_{jj'}(T) are computed in the temperature range 0.004 K T \lesssim T \lesssim 4 K. Satisfactory agreement with other calculations (variational) has been obtained for σel(ϵ)\sigma_{el}(\epsilon).Comment: 24 pages, 3 tables, 8 figure

    Cooper pair dispersion relation for weak to strong coupling

    Full text link
    Cooper pairing in two dimensions is analyzed with a set of renormalized equations to determine its binding energy for any fermion number density and all coupling assuming a generic pairwise residual interfermion interaction. \ Also considered are Cooper pairs (CPs) with nonzero center-of-mass momentum (CMM)--usually neglected in BCS theory--and their binding energy is expanded analytically in powers of the CMM up to quadratic terms. A Fermi-sea-dependent {\it linear} term in the CMM dominates the pair excitation energy in weak coupling (also called the BCS regime) while the more familiar quadratic term prevails in strong coupling (the Bose regime). The crossover, though strictly unrelated to BCS theory {\it per se,} is studied numerically as it is expected to play a central role in a model of superconductivity as a Bose-Einstein condensation of CPs where the transition temperature vanishes for all dimensionality d2d\leq 2 for quadratic dispersion, but is {\it nonzero} for all d1d\geq 1 for linear dispersion.Comment: 11 pages plus 3 figures, revised version accepted in Physical Review
    corecore