720,279 research outputs found

    Micro-bias and macro-performance

    Full text link
    We use agent-based modeling to investigate the effect of conservatism and partisanship on the efficiency with which large populations solve the density classification task--a paradigmatic problem for information aggregation and consensus building. We find that conservative agents enhance the populations' ability to efficiently solve the density classification task despite large levels of noise in the system. In contrast, we find that the presence of even a small fraction of partisans holding the minority position will result in deadlock or a consensus on an incorrect answer. Our results provide a possible explanation for the emergence of conservatism and suggest that even low levels of partisanship can lead to significant social costs.Comment: 11 pages, 5 figure

    On the polarization properties of the charmed baryon Lambda^+_c in the Lambda^+_c -> p + K^- + pi^+ + pi^0 decay

    Full text link
    The polarization properties of the charmed Lambda^+_c baryon are investigated in weak non-leptonic four-body Lambda^+_c -> p + K^- + pi^+ + pi^0 decay. The probability of this decay and the angular distribution of the probability are calculated in the effective quark model with chiral U(3)XU(3) symmetry incorporating Heavy Quark Effective theory (HQET) and the extended Nambu-Jona-Lasinio model with a linear realization of chiral U(3)XU(3) symmetry. The theoretical value of the probability of the decay Lambda^+_c -> p + K^- + pi^+ + pi^0 relative to the probability of the decay Lambda^+_c -> p + K^- + pi^+ does not contain free parameters and fits well experimental data. The application of the obtained results to the analysis of the polarization of the Lambda^+_c produced in the processes of photo and hadroproduction is discussed.Comment: 10 pages, no figures, Late

    Electromagnetic form factors in the J/\psi mass region: The case in favor of additional resonances

    Get PDF
    Using the results of our recent analysis of e^+e^- annihilation, we plot the curves for the diagonal and transition form factors of light hadrons in the time-like region up to the production threshold of an open charm quantum number. The comparison with existing data on the decays of J/\psi into such hadrons shows that some new resonance structures may be present in the mass range between 2 GeVand the J/\psi mass. Searching them may help in a better understanding of the mass spectrum in both the simple and a more sophisticated quark models, and in revealing the details of the three-gluon mechanism of the OZI rule breaking in K\bar K channel.Comment: Formulas are added, typo is corrected, the text is rearranged. Replaced to match the version accepted in Phys Rev

    Low energy electronic states in spheroidal fullerenes

    Full text link
    The field-theory model is proposed to study the electronic states near the Fermi energy in spheroidal fullerenes. The low energy electronic wavefunctions obey a two-dimensional Dirac equation on a spheroid with two kinds of gauge fluxes taken into account. The first one is so-called K spin flux which describes the exchange of two different Dirac spinors in the presence of a conical singularity. The second flux (included in a form of the Dirac monopole field) is a variant of the effective field approximation for elastic flow due to twelve disclination defects through the surface of a spheroid. We consider the case of a slightly elliptically deformed sphere which allows us to apply the perturbation scheme. It is shown exactly how a small deformation of spherical fullerenes provokes an appearance of fine structure in the electronic energy spectrum as compared to the spherical case. In particular, two quasi-zero modes in addition to the true zero mode are predicted to emerge in spheroidal fullerenes. An additional 'hyperfine' splitting of the levels (except the quasi-zero-mode states) is found.Comment: 9 page

    Asymmetry in the Spectrum of High-Velocity H2O Maser Emission Features in Active Galactic Nuclei

    Full text link
    We suggest a mechanism for the amplification of high-velocity water-vapor maser emission features from the central regions of active galactic nuclei. The model of an emitting accretion disk is considered. The high-velocity emission features originate in the right and left wings of the Keplerian disk. The hyperfine splitting of the signal levels leads to an asymmetry in the spectral profile of the water vapor maser line at a frequency of 22.235 GHz. We show that the gain profile asymmetry must lead to an enhanced brightness of the blueshifted high-velocity emission features compared to the redshifted ones. Such a situation is observed in the source UGC 3789.Comment: 11 pages 3 figure

    General relations for quantum gases in two and three dimensions. Two-component fermions

    Full text link
    We derive exact relations for NN spin-1/2 fermions with zero-range or short-range interactions, in continuous space or on a lattice, in 2D2D or in 3D3D, in any external potential. Some of them generalize known relations between energy, momentum distribution n(k)n(k), pair distribution function g(2)(r)g^{(2)}(r), derivative of the energy with respect to the scattering length aa. Expressions are found for the second order derivative of the energy with respect to 1/a1/a (or to lna\ln a in 2D2D). Also, it is found that the leading energy corrections due to a finite interaction range, are proportional to the effective range r_er\_e in 3D3D (and to r_e2r\_e^2 in 2D2D) with exprimable model-independent coefficients, that give access to the subleading short distance behavior of g(2)(r)g^{(2)}(r) and to the subleading 1/k61/k^6 tail of n(k)n(k). This applies to lattice models for some magic dispersion relations, an example of which is given. Corrections to exactly solvable two-body and three-body problems are obtained. For the trapped unitary gas, the variation of the finite-1/a1/a and finite r_er\_e energy corrections within each SO(2,1)SO(2,1) energy ladder is obtained; it gives the frequency shift and the collapse time of the breathing mode. For the bulk unitary gas, we compare to fixed-node Monte Carlo data, and we estimate the experimental uncertainty on the Bertsch parameter due to a finite r_er\_e.Comment: Augmented version: with respect to published version, subsection V.K added (minorization of the contact by the order parameter). arXiv admin note: text overlap with arXiv:1001.077

    Nonfactorization in Hadronic Two-body Cabibbo-favored decays of D^0 and D^+

    Get PDF
    With the inclusion of nonfactorized amplitudes in a scheme with Nc=3N_c=3, we have studied Cabibbo-favored decays of D0D^0 and D+D^+ into two-body hadronic states involving two isospins in the final state. We have shown that it is possible to understand the measured branching ratios and determined the sizes and signs of nonfactorized amplitudes required.Comment: 15 pages, Late

    HII Shells Surrounding Wolf-Rayet stars in M31

    Full text link
    We present the results of an ongoing investigation to provide a detailed view of the processes by which massive stars shape the surrounding interstellar medium (ISM), from pc to kpc scales. In this paper we have focused on studying the environments of Wolf-Rayet (WR) stars in M31 to find evidence for WR wind-ISM interactions, through imaging ionized hydrogen nebulae surrounding these stars. We have conducted a systematic survey for HII shells surrounding 48 of the 49 known WR stars in M31. There are 17 WR stars surrounded by single shells, or shell fragments, 7 stars surrounded by concentric limb brightened shells, 20 stars where there is no clear physical association of the star with nearby H-alpha emission, and 4 stars which lack nearby H-alpha emission. For the 17+7 shells above, there are 12 which contain one or two massive stars (including a WR star) and that are <=40 pc in radius. These 12 shells may be classical WR ejecta or wind-blown shells. Further, there may be excess H-alpha point source emission associated with one of the 12 WR stars surrounded by putative ejecta or wind-blown shells. There is also evidence for excess point source emission associated with 11 other WR stars. The excess emission may arise from unresolved circumstellar shells, or within the extended outer envelopes of the stars themselves. In a few cases we find clear morphological evidence for WR shells interacting with each other. In several H-alpha images we see WR winds disrupting, or punching through, the walls of limb-brightened HII shells.Comment: 20 pages, 4 figures (in several parts: some .jpg and others .ps), accepted to AJ (appearing Oct, 1999

    A new insight into the observation of spectroscopic strength reduction in atomic nuclei: implication for the physical meaning of spectroscopic factors

    Get PDF
    Experimental studies of one nucleon knockout from magic nuclei suggest that their nucleon orbits are not fully occupied. This conflicts a commonly accepted view of the shell closure associated with such nuclei. The conflict can be reconciled if the overlap between initial and final nuclear states in a knockout reaction are calculated by a non-standard method. The method employs an inhomogeneous equation based on correlation-dependent effective nucleon-nucleon (NN) interactions and allows the simplest wave functions, in which all nucleons occupy only the lowest nuclear orbits, to be used. The method also reproduces the recently established relation between reduction of spectroscopic strength, observed in knockout reactions on other nuclei, and nucleon binding energies. The implication of the inhomogeneous equation method for the physical meaning of spectroscopic factors is discussed.Comment: 4 pages, accepted by Phys. Rev. Let

    Large rare fluctuations in systems with delayed dissipation

    Full text link
    We study the probability distribution and the escape rate in systems with delayed dissipation that comes from the coupling to a thermal bath. To logarithmic accuracy in the fluctuation intensity, the problem is reduced to a variational problem. It describes the most probable fluctuational paths, which are given by acausal equations due to the delay. In thermal equilibrium, the most probable path passing through a remote state has time reversal symmetry, even though one cannot uniquely define a path that starts from a state with given system coordinate and momentum. The corrections to the distribution and the escape activation energy for small delay and small noise correlation time are obtained in the explicit form.Comment: 9 page
    corecore