673 research outputs found

    Dielectric mismatch and shallow donor impurities in GaN/HfO2 quantum wells

    Full text link
    In this work we investigate electron-impurity binding energy in GaN/HfO2_2 quantum wells. The calculation considers simultaneously all energy contributions caused by the dielectric mismatch: (i) image self-energy (i.e., interaction between electron and its image charge), (ii) the direct Coulomb interaction between the electron-impurity and (iii) the interactions among electron and impurity image charges. The theoretical model account for the solution of the time-dependent Schr\"odinger equation and the results shows how the magnitude of the electron-impurity binding energy depends on the position of impurity in the well-barrier system. The role of the large dielectric constant in the barrier region is exposed with the comparison of the results for GaN/HfO2_2 with those of a more typical GaN/AlN system, for two different confinement regimes: narrow and wide quantum wells.Comment: 6 Pages, 7 figure

    Perturbation theory for the one-dimensional optical polaron

    Full text link
    The one-dimensional optical polaron is treated on the basis of the perturbation theory in the weak coupling limit. A special matrix diagrammatic technique is developed. It is shown how to evaluate all terms of the perturbation theory for the ground-state energy of a polaron to any order by means of this technique. The ground-state energy is calculated up to the eighth order of the perturbation theory. The effective mass of an electron is obtained up to the sixth order of the perturbation theory. The radius of convergence of the obtained series is estimated. The obtained results are compared with the results from the Feynman polaron theory.Comment: 9 pages, 2 figures, RevTeX, to be published in Phys. Rev. B (2001) Ap

    Quantum control theory for coupled 2-electron dynamics in quantum dots

    Full text link
    We investigate optimal control strategies for state to state transitions in a model of a quantum dot molecule containing two active strongly interacting electrons. The Schrodinger equation is solved nonperturbatively in conjunction with several quantum control strategies. This results in optimized electric pulses in the THz regime which can populate combinations of states with very short transition times. The speedup compared to intuitively constructed pulses is an order of magnitude. We furthermore make use of optimized pulse control in the simulation of an experimental preparation of the molecular quantum dot system. It is shown that exclusive population of certain excited states leads to a complete suppression of spin dephasing, as was indicated in Nepstad et al. [Phys. Rev. B 77, 125315 (2008)].Comment: 24 pages, 9 figure

    Polaron effects in electron channels on a helium film

    Full text link
    Using the Feynman path-integral formalism we study the polaron effects in quantum wires above a liquid helium film. The electron interacts with two-dimensional (2D) surface phonons, i.e. ripplons, and is confined in one dimension (1D) by an harmonic potential. The obtained results are valid for arbitrary temperature (TT), electron-phonon coupling strength (α\alpha ), and lateral confinement (ω0\omega_{0}). Analytical and numerical results are obtained for limiting cases of TT, α\alpha , and ω0\omega_{0}. We found the surprising result that reducing the electron motion from 2D to quasi-1D makes the self-trapping transition more continuous.Comment: 6 pages, 7 figures, submitted to Phys. Rev.

    On the Construction of Human-Automation Interfaces by Formal Abstraction

    Full text link
    In this paper we present a formal methodology and an algorithmic procedure for constructing human-auto-mation interfaces and corresponding user-manuals. Our focus is the information provided to the user about the behavior of the underlying machine, rather than the graphical and layout features of the interface itself. Our approach involves a systematic reduction of the behavioral model of the machine, as well as systematic abstraction of information that displayed in the inter-face. This reduction procedure satisfies two require-ments: First, the interface must be correct so as not to cause mode confusion that may lead the user to per-form incorrect actions. Secondly, the interface must be as simple as possible and not include any unnecessary information. The algorithm for generating such inter-faces can be automated, and a preliminary software system for its implementation has been developed

    Mean parameter model for the Pekar-Fr\"{o}hlich polaron in a multilayered heterostructure

    Full text link
    The polaron energy and the effective mass are calculated for an electron confined in a finite quantum well constructed of GaAs/AlxGa1−xAsGaAs/Al_x Ga_{1-x} As layers. To simplify the study we suggest a model in which parameters of a medium are averaged over the ground-state wave function. The rectangular and the Rosen-Morse potential are used as examples. To describe the confined electron properties explicitly to the second order of perturbations in powers of the electron-phonon coupling constant we use the exact energy-dependent Green function for the Rosen-Morse confining potential. In the case of the rectangular potential, the sum over all intermediate virtual states is calculated. The comparison is made with the often used leading term approximation when only the ground-state is taken into account as a virtual state. It is shown that the results are quite different, so the incorporation of all virtual states and especially those of the continuous spectrum is essential. Our model reproduces the correct three-dimensional asymptotics at both small and large widths. We obtained a rather monotonous behavior of the polaron energy as a function of the confining potential width and found a peak of the effective mass. The comparison is made with theoretical results by other authors. We found that our model gives practically the same (or very close) results as the explicit calculations for potential widths L≥10A˚L \geq 10 \AA.Comment: 12 pages, LaTeX, including 5 PS-figures, subm. to Phys. Rev. B, new data are discusse
    • …
    corecore