6,509 research outputs found
Mobilities of uranium and mercury ions in helium
The mobilities of mass-identified U(+) and Hg (+) ions in helium were determined in a drift tube-mass spectrometer. For uranium ions, a reduced mobility value is obtained at 305 K and a standard gas density of 2.69 x 10 to the 19th power/cu cm. The mobility of mercury ions is in agreement with two previous determinations. The effect of fast ion injection in drift mobility measurements is discussed, and a technique to circumvent these problems is described. The results are compared with existing theories of ion mobilities
Measurements of ion-molecule reactions of He plus, H plus, HeH plus with H sub 2 and D sub 2
A drift tube mass spectrometer apparatus has been used to determine the rate coefficient, energy dependence and product ions of the reaction He(+) +H2. The total rate coefficient at 300 K is 1.1 plus or minus 0.1) 10 to minus 13th power cu cm/sec. The reaction proceeds principally by dissociative charge transfer to produce H(+), with the small remainder going by charge transfer to produce H2(+) and by atom rearrangement to produce HeH(+). The rate coefficient increases slowly with increasing ion mean energy, reaching a value of 2.8 x ten to the minus 13th power cu cm sec at 0.18 eV. The corresponding reaction with deuterium, He(+) + D2, exhibits a value (5 plus or minus 1) x 10 to the minus 14th cu cm/sec at 300K. The reaction rates for conversion of H(+) and HeH(+) to H3(+) on collisions with H2 molecules are found to agree well with results of previous investigations
Electron-temperature dependence of dissociative recombination of electrons with CO(+)-(CO)n-series ions
A microwave afterglow mass spectrometer apparatus is used to determine the dependence on electron temperature T sub e of the recombination coefficients alpha sub n of the dimer and trimer ions of the series CO+.(CO) sub n. It is found that alpha sub 1 = (1.3 + or - 0.3)x 0.000001 (T sub e(K)/300) to the -0.34; and alpha sub 2 = (1.9 + or - 0.4)x 0.000001 (T sub e(K)/300) to the -0.33 cu cm/sec. These dependences on T sub e are quite different from those obtained previously for polar-cluster ions of the hydronium and ammonium series but are similar to that for simple diatomic ions
Measurements of the O+ plus N2 and O+ plus O2 reaction rates from 300 to 900 K
Rate coefficients for the O(+) + N2 atom transfer and O(+) + O2 charge transfer reactions are determined at thermal energies between 300 K and 900 K difference in a heated drift tube mass spectrometer apparatus. At 300 K the values K(O(+) + N2) = (1.2 plus or minus 0.1) x 10 to the negative 12 power cubic cm/sec and k(O(+) + O2) = (2.1 plus or minus 0.2) x 10 to the negative 11 power cubic cm/sec were obtained, with a 50% difference decrease in the reaction rates upon heating to 700 K. These results are in good agreement with heated flowing afterglow results, but the O(+) + O2 thermal rate coefficients are systematically lower than equivalent Maxwellian rates inferred by conversion of nonthermal drift tube and flow drift data
An interferometric study of dissociative recombination radiation in neon and argon afterglows
Spectral line profiles on neon and argon determined by high resolution, photoelectric recording, pressure tuned Fabry-Perot interferomete
Ground-based observations of equatorial thermosphere dynamics with a Fabry-Perot interferometer
Fabry-Perot determinations of thermospheric temperatures from 630.0 nm nightglow line width measurements were carried out for the period April to August, 1983. The nightly variation of the thermospheric temperature measured on 53 nights is compared with MSIS model predictions and found to agree occasionally with the model but, on the average, to exceed model predictions by approximately 180 K. The largest differences, 400 to 500 K occur during strongly increasing geomagnetic activity. Significant differences occur both during high geomagnetic/low solar activity and during low geomagnetic/high solar activity
Measurements of recombination of electrons with H3(plus) and H5(plus) ions
The electron-ion recombination coefficients for H3(+) and H5(+) ions were determined by means of a microwave afterglow/mass spectrometer apparatus. Measurements of electron density decays in helium-hydrogen mixtures are correlated with the decay of mass-identified ion currents to the wall of the microwave cavity. At low partial pressures of hydrogen in the mixture, the ion H3(+) dominates the ion composition and the ion wall current tracks the electron density decay curves. From recombination controlled electron density decay curves, the values alpha (H3(+)) = (2.9 + or - 0.3), (2.3 + or - 0.3), and (2.0 + or - 0.2) x 0.0000001 cu cm per sec, are obtained at 205, 300 and 450 K, respectively. At higher partial pressures of hydrogen and low temperatures, where (H5(+)) is the dominant ion, the value alpha (H5(+)) = (3.6 + or - 1.0) x 0.0000001 cu cm per sec is obtained at 205 K. The implications of these results concerning ionization levels in the atmospheres of the outer planets and in the interstellar medium are discussed
Reactions of Na/plus/, K/plus/, and Ba/plus/ ions with O2, NO, and H2O molecules
Investigating ion molecule reactions of sodium, potassium, and barium ions with oxygen, nitric oxide, and water in drift tube mass spectromete
A mathematical study of the electron decay in diffusion and recombination controlled afterglows - Annals of physics
Mathematical solution for electron continuity equation in decaying plasma afterglo
New experimental limits on neutron - mirror neutron oscillations in the presence of mirror magnetic field
Present probes do not exclude that the neutron () oscillation into mirror
neutron (), a sterile state exactly degenerate in mass with the neutron,
can be a very fast process, in fact faster than the neutron decay itself. This
process is sensitive to the magnetic field. Namely, if the mirror magnetic
field exists at the Earth, oscillation probability can be
suppressed or resonantly amplified by the applied magnetic field ,
depending on its strength and on the angle between and
. We present the results of ultra-cold neutron storage measurements
aiming to check the anomalies observed in previous experiments which could be a
signal for oscillation in the presence of mirror magnetic field ~G. Analyzing the experimental data on neutron loses, we obtain a new lower
limit on oscillation time s (95 % C.L.) for any
between 0.08 and 0.17 G, and s (95 % C.L.)
for any in the interval () G
- …