3 research outputs found

    Pigmented melanoma cell migration study on murine syngeneic B16F10 melanoma cells or tissue transplantation models

    Get PDF
    Melanoma is a lethal form of skin cancer with poor prognosis, especially due to the early metastatic feature. Recent studies have shown that the melanin pigment influences the nanomechanical properties and, therefore, the metastatic behavior of the melanoma cells. We aimed to study the growth of subcutaneously transplanted syngeneic melanoma tissue in female C57BL/6 mice harvested from a mouse with a four-week B16F10 melanoma. Also, we studied the effect of the melanin pigment loading on the peritumoral migratory abilities of melanoma cells. Even when the syngeneic transplant was different (cultured cells vs. tumor tissue), the morphological features and the tumor growth were similar in both groups of mice. Heavily pigmented melanoma cells had low migration abilities. Angiogenesis, the depigmentation phenomenon, and the cell shape changes were related to pigmented melanoma cell migration along the matrix collagen fibers of peritumoral structures: the abluminal face of the vessels (angiotropism), the endomysium, and the nerves (neurotropism). The replacement of the histopathological growth pattern, the absence of angiogenesis, and rapidly tumor-bearing emboli were correlated with amelanotic and low pigmented melanoma cells. This study demonstrated that syngeneic melanoma tissue transplantation was a viable technique, and that the melanin pigment loading level can affect the melanoma cell migration profile

    Pigmented melanoma cell migration study on murine syngeneic B16F10 melanoma cells or tissue transplantation models

    Get PDF
    Melanoma is a lethal form of skin cancer with poor prognosis, especially due to the early metastatic feature. Recent studies have shown that the melanin pigment influences the nanomechanical properties and, therefore, the metastatic behavior of the melanoma cells. We aimed to study the growth of subcutaneously transplanted syngeneic melanoma tissue in female C57BL/6 mice harvested from a mouse with a four-week B16F10 melanoma. Also, we studied the effect of the melanin pigment loading on the peritumoral migratory abilities of melanoma cells. Even when the syngeneic transplant was different (cultured cells vs. tumor tissue), the morphological features and the tumor growth were similar in both groups of mice. Heavily pigmented melanoma cells had low migration abilities. Angiogenesis, the depigmentation phenomenon, and the cell shape changes were related to pigmented melanoma cell migration along the matrix collagen fibers of peritumoral structures: the abluminal face of the vessels (angiotropism), the endomysium, and the nerves (neurotropism). The replacement of the histopathological growth pattern, the absence of angiogenesis, and rapidly tumor-bearing emboli were correlated with amelanotic and low pigmented melanoma cells. This study demonstrated that syngeneic melanoma tissue transplantation was a viable technique, and that the melanin pigment loading level can affect the melanoma cell migration profile

    Iron Oxide/Salicylic Acid Nanoparticles as Potential Therapy for B16F10 Melanoma Transplanted on the Chick Chorioallantoic Membrane

    No full text
    Unfavorable prognoses and low survival rates are specific features of metastatic melanoma that justify the concern for the development of new therapeutic strategies. Lately, nanotechnology has become an attractive field of study due to recent advances in nanomedicine. Using a chick chorioallantoic membrane (CAM) implanted with xenografts harvested from C57BL/6 mice with B16F10 melanoma cells, we studied the effects of iron oxide nanoparticles functionalized with salicylic acid (SaMNPs) as a form of therapy on the local development of xenotransplants and CAM vessels. The SaMNPs induced an anti-angiogenic effect on the CAM vessels, which accumulated preferentially in the melanoma cells and induced apoptosis and extensive xenograft necrosis. As a result, this slowed the increase in the xenograft volume and reduced the melanoma cells’ ability to metastasize locally and distally. Further, we demonstrate the use of the chick CAM model as a tool for testing the action of newly synthesized nanocomposites on melanoma xenotransplants. The SaMNPs had a therapeutic effect on B16F10 melanoma due to the synergistic action of the two components of its structure: the coating of the salicylic acid with antiangiogenic and chemotherapeutic action and the core of iron oxides with cytotoxic action
    corecore