6 research outputs found

    Quantitative Analyses of Chemical Elements in Phragmites australis as Bioindication of Anthropization in Urban Lakes

    No full text
    Urban areas face numerous provocations, such as air, water, and soil contamination. Additionally, urban lakes have numerous beneficial services that contribute to urban sustainability. In urban aquatic ecosystems, X-ray fluorescence can provide complex answers regarding the presence of elements associated with environmental risk. The study aimed to screen the elements with different potentials (critical raw materials—CRMs; toxic; potentially toxic) from Phragmites australis leaves along the Colentina urban river. The samples from the peri-urban and urban river courses highlighted the presence of elements with different potentials for ecosystems and human health. The investigated stations were influenced by regional anthropogenic pressures, where P. australis highlighted the absorption of the dominant elements found in the environment. From the total of 56 elements present in the samples, some have structural roles (K, Si, Ca, and Cl), some are from the CRM category, and some are airborne heavy metals and rare metals. Furthermore, among CRMs, cesium, lanthanum, magnesium, phosphorus, vanadium, sulfur, holmium, and titanium were recorded with higher values. Although the values of the elements in the anthropogenic source were in low concentrations, spatial differences were highlighted. The stations in agricultural areas were different from the peri-urban and urban ones

    Effect of ZnO on Properties of Gels for Heritage Objects Conservation

    No full text
    One of the current research objectives is the development of new films for the conservation of glass heritage objects. The value of historical glass objects is given by the technology and raw materials used in production as well as their transparency and color. Their colors are correlated with oxide composition rich in transitional metals, which decrease resistance of corrosive agents from the atmosphere. In this paper, SiO2-ZnO gels have been designed to protect historical glass objects. The sol–gel method used to obtain gels is a powerful tool for functionalizing different materials. An important functionalization is the antibacterial activity. By applying a gel, the coated material is able to decrease the growth of bacteria. After deposition, some gels must be strengthened by heat treatment. The effect of ZnO content (10 mol% and 20 mol%) on the properties of the studied gels was investigated by Differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), and antibacterial tests. Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, and the halotolerant bacterium, Virgibacillus halodenitrificans, isolated from a salt crystal from Unirea mine, Slănic Prahova, Romania, were used. The gel Gel 2 (SiO2-ZnO (20 mol%)) showed the best properties

    The Susceptibility to Biodegradation of Some Consolidants Used in the Restoration of Mural Paintings

    No full text
    This study evaluated both the possible fungal metabolites involved in the degradation of the commercial consolidant known as Paraloid® B72 and the national artisanal consolidant named transparent dispersion of casein and the deteriorative potential of melanised fungi. Fungi were found to have the capacity to produce organic acids, proteases and esterases when they grow on consolidants, which can be used as nutrients. Mycelia produced by melanised fungi affected the appearance, as well as the integrity, of consolidants applied on painted experimental models and fragments of frescoes. In treatment trials with biocides (Biotin R®, Biotin T® and Preventol® RI 80), the morphology of the consolidants, as well as the vitality of the fungi, were assessed 30 days after the inoculation with melanic fungi. Direct observation, optical microscopy, colourimetry and microbiological analysis highlighted the degradation of the consolidants by fungi and their acquired resistance after biocidal treatments. Biotin R® applied by brushing on the surface of the consolidants proved to be the most effective treatment, followed by Biotin T®. Considering the overall results for both Paraloid® B72 and transparent dispersion of casein, use of Biotin R® applied by brushing is recommended for preventive conservation

    The Susceptibility to Biodegradation of Some Consolidants Used in the Restoration of Mural Paintings

    No full text
    This study evaluated both the possible fungal metabolites involved in the degradation of the commercial consolidant known as Paraloid® B72 and the national artisanal consolidant named transparent dispersion of casein and the deteriorative potential of melanised fungi. Fungi were found to have the capacity to produce organic acids, proteases and esterases when they grow on consolidants, which can be used as nutrients. Mycelia produced by melanised fungi affected the appearance, as well as the integrity, of consolidants applied on painted experimental models and fragments of frescoes. In treatment trials with biocides (Biotin R®, Biotin T® and Preventol® RI 80), the morphology of the consolidants, as well as the vitality of the fungi, were assessed 30 days after the inoculation with melanic fungi. Direct observation, optical microscopy, colourimetry and microbiological analysis highlighted the degradation of the consolidants by fungi and their acquired resistance after biocidal treatments. Biotin R® applied by brushing on the surface of the consolidants proved to be the most effective treatment, followed by Biotin T®. Considering the overall results for both Paraloid® B72 and transparent dispersion of casein, use of Biotin R® applied by brushing is recommended for preventive conservation

    Self-Cleaning and Antibacterial Properties of the Cement Mortar with ZnO/Hydroxyapatite Powders

    No full text
    According to literature data, different micro- and nanopowders have been used as a partial substitute for cement mortar due to their small size and large specific surface area. The aim of the work is to develop innovative materials based on cement mortar with antibacterial and self-cleaning properties, which can be used in the long-term maintenance of clean spaces. First, zinc oxide/hydroxyapatite (ZnO/Hap) powder denoted as ZH was synthesized by the hydrothermal method; then it was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM)/ energy dispersive spectroscopy (EDS), and adsorption–desorption isotherms. The second step was the cement mortar preparation: one plain, denoted E, and one with ZH powder inside, denoted MZH. Both mortars were subjected to self-cleaning and antibacterial tests. In the self-cleaning tests, two concentrated solutions of rhodamine B and methylene blue were used. MZH showed a better decolorating after 24 h of UV light than plain cement mortar denoted E for both solutions. In order to highlight the antibacterial effect of cement mortars on some strains of Gram-positive and Gram-negative bacteria, the direct contact method was used. The study revealed that, after 24 h of incubation, the planktonic growth of the E. coli strain is significantly inhibited in the presence of the MZH sample, compared to the control strain. MZH cement mortar exhibits a better growth inhibitory property than the plain cement mortar E

    Self-Cleaning and Antibacterial Properties of the Cement Mortar with ZnO/Hydroxyapatite Powders

    No full text
    According to literature data, different micro- and nanopowders have been used as a partial substitute for cement mortar due to their small size and large specific surface area. The aim of the work is to develop innovative materials based on cement mortar with antibacterial and self-cleaning properties, which can be used in the long-term maintenance of clean spaces. First, zinc oxide/hydroxyapatite (ZnO/Hap) powder denoted as ZH was synthesized by the hydrothermal method; then it was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM)/ energy dispersive spectroscopy (EDS), and adsorption–desorption isotherms. The second step was the cement mortar preparation: one plain, denoted E, and one with ZH powder inside, denoted MZH. Both mortars were subjected to self-cleaning and antibacterial tests. In the self-cleaning tests, two concentrated solutions of rhodamine B and methylene blue were used. MZH showed a better decolorating after 24 h of UV light than plain cement mortar denoted E for both solutions. In order to highlight the antibacterial effect of cement mortars on some strains of Gram-positive and Gram-negative bacteria, the direct contact method was used. The study revealed that, after 24 h of incubation, the planktonic growth of the E. coli strain is significantly inhibited in the presence of the MZH sample, compared to the control strain. MZH cement mortar exhibits a better growth inhibitory property than the plain cement mortar E
    corecore