70 research outputs found
Navigating the integration of biotic interactions in biogeography
Biotic interactions are widely recognised as the backbone of ecological communities, but how best to study them is a subject of intense debate, especially at macro-ecological scales. While some researchers claim that biotic interactions need to be observed directly, others use proxies and statistical approaches to infer them. Despite this ambiguity, studying and predicting the influence of biotic interactions on biogeographic patterns is a thriving area of research with crucial implications for conservation. Three distinct approaches are currently being explored. The first approach involves empirical observation and measurement of biotic interactions' effects on species demography in laboratory or field settings. While these findings contribute to theory and to understanding species' demographies, they can be challenging to generalise on a larger scale. The second approach centers on inferring biotic associations from observed co-occurrences in space and time. The goal is to distinguish the environmental and biotic effects on species distributions. The third approach constructs extensive potential interaction networks, known as metanetworks, by leveraging existing knowledge about species ecology and interactions. This approach analyses local realisations of these networks using occurrence data and allows understanding large distributions of multi-taxa assemblages. In this piece, we appraise these three approaches, highlighting their respective strengths and limitations. Instead of seeing them as conflicting, we advocate for their integration to enhance our understanding and expand applications in the emerging field of interaction biogeography. This integration shows promise for ecosystem understanding and management in the Anthropocene era
The rate of beneficial mutations surfing on the wave of a range expansion
Many theoretical and experimental studies suggest that range expansions can
have severe consequences for the gene pool of the expanding population. Due to
strongly enhanced genetic drift at the advancing frontier, neutral and weakly
deleterious mutations can reach large frequencies in the newly colonized
regions, as if they were surfing the front of the range expansion. These
findings raise the question of how frequently beneficial mutations successfully
surf at shifting range margins, thereby promoting adaptation towards a
range-expansion phenotype. Here, we use individual-based simulations to study
the surfing statistics of recurrent beneficial mutations on wave-like range
expansions in linear habitats. We show that the rate of surfing depends on two
strongly antagonistic factors, the probability of surfing given the spatial
location of a novel mutation and the rate of occurrence of mutations at that
location. The surfing probability strongly increases towards the tip of the
wave. Novel mutations are unlikely to surf unless they enjoy a spatial head
start compared to the bulk of the population. The needed head start is shown to
be proportional to the inverse fitness of the mutant type, and only weakly
dependent on the carrying capacity. The second factor is the mutation
occurrence which strongly decreases towards the tip of the wave. Thus, most
successful mutations arise at an intermediate position in the front of the
wave. We present an analytic theory for the tradeoff between these factors that
allows to predict how frequently substitutions by beneficial mutations occur at
invasion fronts. We find that small amounts of genetic drift increase the
fixation rate of beneficial mutations at the advancing front, and thus could be
important for adaptation during species invasions.Comment: 21 pages, 7 figures; to appear in PLoS Computational Biolog
Taxonomic and functional turnover are decoupled in European peat bogs
In peatland ecosystems, plant communities mediate a globally significant carbon store. The effects of global environmental change on plant assemblages are expected to be a factor in determining how ecosystem functions such as carbon uptake will respond. Using vegetation data from 56 Sphagnum-dominated peat bogs across Europe, we show that in these ecosystems plant species aggregate into two major clusters that are each defined by shared response to environmental conditions. Across environmental gradients, we find significant taxonomic turnover in both clusters. However, functional identity and functional redundancy of the community as a whole remain unchanged. This strongly suggests that in peat bogs, species turnover across environmental gradients is restricted to functionally similar species. Our results demonstrate that plant taxonomic and functional turnover are decoupled, which may allow these peat bogs to maintain ecosystem functioning when subject to future environmental change
Bridging reproductive and microbial ecology: a case study in arbuscular mycorrhizal fungi
Offspring size is a key trait for understanding the reproductive ecology of species, yet studies addressing the ecological meaning of offspring size have so far been limited to macro-organisms. We consider this a missed opportunity in microbial ecology and provide what we believe is the first formal study of offspring-size variation in microbes using reproductive models developed for macro-organisms. We mapped the entire distribution of fungal spore size in the arbuscular mycorrhizal (AM) fungi (subphylum Glomeromycotina) and tested allometric expectations of this trait to offspring (spore) output and body size. Our results reveal a potential paradox in the reproductive ecology of AM fungi: while large spore-size variation is maintained through evolutionary time (independent of body size), increases in spore size trade off with spore output. That is, parental mycelia of large-spored species produce fewer spores and thus may have a fitness disadvantage compared to small-spored species. The persistence of the large-spore strategy, despite this apparent fitness disadvantage, suggests the existence of advantages to large-spored species that could manifest later in fungal life history. Thus, we consider that solving this paradox opens the door to fruitful future research establishing the relationship between offspring size and other AM life history traits
Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy
Understanding patterns and processes in biological diversity is a critical task given current and rapid environmental change. Such knowledge is even more essential when the taxa under consideration are important ecological and evolutionary models. One of these cases is the monogonont rotifer cryptic species complex Brachionus plicatilis, which is by far the most extensively studied group of rotifers, is widely used in aquaculture, and is known to host a large amount of unresolved diversity. Here we collate a dataset of previously available and newly generated sequences of COI and ITS1 for 1273 isolates of the B. plicatilis complex and apply three approaches in DNA taxonomy (i.e. ABGD, PTP, and GMYC) to identify and provide support for the existence of 15 species within the complex. We used these results to explore phylogenetic signal in morphometric and ecological traits, and to understand correlation among the traits using phylogenetic comparative models. Our results support niche conservatism for some traits (e.g. body length) and phylogenetic plasticity for others (e.g. genome size)
Plant functional and taxonomic diversity in European grasslands along climatic gradients
Aim: European grassland communities are highly diverse, but patterns and drivers of their continental-scale diversity remain elusive. This study analyses taxonomic and functional richness in European grasslands along continental-scale temperature and precipitation gradients.
Location: Europe.
Methods: We quantified functional and taxonomic richness of 55,748 vegetation plots. Six plant traits, related to resource acquisition and conservation, were analysed to describe plant community functional composition. Using a null-model approach we derived functional richness effect sizes that indicate higher or lower diversity than expected given the taxonomic richness. We assessed the variation in absolute functional and taxonomic richness and in functional richness effect sizes along gradients of minimum temperature, temperature range, annual precipitation, and precipitation seasonality using a multiple general additive modelling approach.
Results: Functional and taxonomic richness was high at intermediate minimum temperatures and wide temperature ranges. Functional and taxonomic richness was low in correspondence with low minimum temperatures or narrow temperature ranges. Functional richness increased and taxonomic richness decreased at higher minimum temperatures and wide annual temperature ranges. Both functional and taxonomic richness decreased with increasing precipitation seasonality and showed a small increase at intermediate annual precipitation. Overall, effect sizes of functional richness were small. However, effect sizes indicated trait divergence at extremely low minimum temperatures and at low annual precipitation with extreme precipitation seasonality.
Conclusions: Functional and taxonomic richness of European grassland communities vary considerably over temperature and precipitation gradients. Overall, they follow similar patterns over the climate gradients, except at high minimum temperatures and wide temperature ranges, where functional richness increases and taxonomic richness decreases. This contrasting pattern may trigger new ideas for studies that target specific hypotheses focused on community assembly processes. And though effect sizes were small, they indicate that it may be important to consider climate seasonality in plant diversity studies
- …