6,877 research outputs found

    Import of honeybee prepromelittin into the endoplasmic reticulum

    Get PDF
    Honeybee prepromelittin is correctly processed and imported by dog pancreas microsomes. Insertion of prepromelittin into microsomal membranes, as assayed by signal sequence removal, does not depend on signal recognition particle (SRP) and docking protein. We addressed the question as to how prepromelittin bypasses the SRP/docking protein system. Hybrid proteins between prepromelittin, or carboxy-terminally truncated derivatives, and the cytoplasmic protein dihydrofolate reductase from mouse were constructed. These hybrid proteins were analysed for membrane insertion and sequestration into microsomes. The results suggest the following: (i) The signal sequence of prepromelittin is capable of interacting with the SRP/docking protein system, but this interaction is not mandatory for membrane insertion; this is related to the small size of prepromelittin. (ii) In prepromelittin a cluster of negatively charged amino acids must be balanced by a cluster of positively charged amino acids in order to allow membrane insertion. (iii) In general, a signal sequence can be sufficient to mediate membrane insertion independently of SRP and docking protein in the case of short precursor proteins; however, the presence and distribution of charged amino acids within the mature part of these precursors can play distinct roles

    't Hooft anomalies of discrete gauge theories and non-abelian group cohomology

    Full text link
    We study discrete symmetries of Dijkgraaf-Witten theories and their gauging in the framework of (extended) functorial quantum field theory. Non-abelian group cohomology is used to describe discrete symmetries and we derive concrete conditions for such a symmetry to admit 't Hooft anomalies in terms of the Lyndon-Hochschild-Serre spectral sequence. We give an explicit realization of a discrete gauge theory with 't Hooft anomaly as a state on the boundary of a higher-dimensional Dijkgraaf-Witten theory. This allows us to calculate the 2-cocycle twisting the projective representation of physical symmetries via transgression. We present a general discussion of the bulk-boundary correspondence at the level of partition functions and state spaces, which we make explicit for discrete gauge theories.Comment: 46 pages, 1 figure; v2: minor corrections and clarifying comments added, references updated; Final version to appear in Communications in Mathematical Physic

    Extended quantum field theory, index theory and the parity anomaly

    Full text link
    We use techniques from functorial quantum field theory to provide a geometric description of the parity anomaly in fermionic systems coupled to background gauge and gravitational fields on odd-dimensional spacetimes. We give an explicit construction of a geometric cobordism bicategory which incorporates general background fields in a stack, and together with the theory of symmetric monoidal bicategories we use it to provide the concrete forms of invertible extended quantum field theories which capture anomalies in both the path integral and Hamiltonian frameworks. Specialising this situation by using the extension of the Atiyah-Patodi-Singer index theorem to manifolds with corners due to Loya and Melrose, we obtain a new Hamiltonian perspective on the parity anomaly. We compute explicitly the 2-cocycle of the projective representation of the gauge symmetry on the quantum state space, which is defined in a parity-symmetric way by suitably augmenting the standard chiral fermionic Fock spaces with Lagrangian subspaces of zero modes of the Dirac Hamiltonian that naturally appear in the index theorem. We describe the significance of our constructions for the bulk-boundary correspondence in a large class of time-reversal invariant gauge-gravity symmetry-protected topological phases of quantum matter with gapless charged boundary fermions, including the standard topological insulator in 3+1 dimensions.Comment: 63 pages, 3 figures; v2: clarifying comments and references added; Final version to be published in Communications in Mathematical Physic

    Copyright and Open Access for Academic Works

    Get PDF
    In a recent paper, Prof. Steven Shavell (see Shavell, 2009) has argued strongly in favor of eliminating copyright from academic works. Based upon solid economic arguments, Shavell analyses the pros and cons of removal of copyright and in its place to have a pure open access system, in which authors (or more likely their employers) would provide the funds that keep journals in business. In this paper we explore some of the arguments in Shavell’s paper, above all the way in which the distribution of the sources of journal revenue would be altered, and the feasible effects upon the quality of journal content. We propose a slight modification to a pure open access system which may provide for the best of both the copyright and open access worlds.Open Access, Academic Works, Effects of Removal of Copyrights

    Spin correlation functions in random-exchange s=1/2 XXZ chains

    Get PDF
    The decay of (disorder-averaged) static spin correlation functions at T=0 for the one-dimensional spin-1/2 XXZ antiferromagnet with uniform longitudinal coupling JΔJ\Delta and random transverse coupling JλiJ\lambda_i is investigated by numerical calculations for ensembles of finite chains. At Δ=0\Delta=0 (XX model) the calculation is based on the Jordan-Wigner mapping to free lattice fermions for chains with up to N=100 sites. At Δ0\Delta \neq 0 Lanczos diagonalizations are carried out for chains with up to N=22 sites. The longitudinal correlation function is found to exhibit a power-law decay with an exponent that varies with $\Delta$ and, for nonzero $\Delta$, also with the width of the $\lambda_i$-distribution. The results for the transverse correlation function show a crossover from power-law decay to exponential decay as the exchange disorder is turned on.Comment: RevTex manuscript (7 pages), 4 postscript figure
    corecore