7,132 research outputs found

    A condition for first order phase transitions in quantum mechanical tunneling models

    Get PDF
    A criterion is derived for the determination of parameter domains of first order phase transitions in quantum mechanical tunneling models. The criterion is tested by application to various models, in particular to some which have been used recently to explore spin tunneling in macroscopic particles. In each case agreement is found with previously heuristically determined domains.Comment: 13 pages, 5 figure

    Quantum Phase Interference for Quantum Tunneling in Spin Systems

    Get PDF
    The point-particle-like Hamiltonian of a biaxial spin particle with external magnetic field along the hard axis is obtained in terms of the potential field description of spin systems with exact spin-coordinate correspondence. The Zeeman energy term turns out to be an effective gauge potential which leads to a nonintegrable pha se of the Euclidean Feynman propagator. The phase interference between clockwise and anticlockwise under barrier propagations is recognized explicitly as the Aharonov-Bohm effect. An additional phase which is significant for quantum phase interference is discovered with the quantum theory of spin systems besides the known phase obtained with the semiclassical treatment of spin. We also show the energ y dependence of the effect and obtain the tunneling splitting at excited states with the help of periodic instantons.Comment: 19 pages, no figure, to appear in PR

    A Note on Tachyons in the D3+D3ˉD3+{\bar {D3}} System

    Full text link
    The periodic bounce of Born-Infeld theory of D3D3-branes is derived, and the BPS limit of infinite period is discussed as an example of tachyon condensation. The explicit bounce solution to the Born--Infeld action is interpreted as an unstable fundamental string stretched between the brane and its antibrane.Comment: 10 pages, 2 figures. v2: minor changes, acknowledgement added; v3: explanations and references added. Final version to appear in Mod. Phys. Lett.

    Enhancement of Quantum Tunneling for Excited States in Ferromagnetic Particles

    Full text link
    A formula suitable for a quantitative evaluation of the tunneling effect in a ferromagnetic particle is derived with the help of the instanton method. The tunneling between n-th degenerate states of neighboring wells is dominated by a periodic pseudoparticle configuration. The low-lying level-splitting previously obtained with the LSZ method in field theory in which the tunneling is viewed as the transition of n bosons induced by the usual (vacuum) instanton is recovered. The observation made with our new result is that the tunneling effect increases at excited states. The results should be useful in analyzing results of experimental tests of macroscopic quantum coherence in ferromagnetic particles.Comment: 18 pages, LaTex, 1 figur

    Periodic Bounce for Nucleation Rate at Finite Temperature in Minisuperspace Models

    Get PDF
    The periodic bounce configurations responsible for quantum tunneling are obtained explicitly and are extended to the finite energy case for minisuperspace models of the Universe. As a common feature of the tunneling models at finite energy considered here we observe that the period of the bounce increases with energy monotonically. The periodic bounces do not have bifurcations and make no contribution to the nucleation rate except the one with zero energy. The sharp first order phase transition from quantum tunneling to thermal activation is verified with the general criterions.Comment: 17 pages, 5 postscript figures include

    Periodic instanton method and macroscopic quantum tunneling between two weakly-linked Bose-Einstein condensates

    Get PDF
    A new method is used to investigate the tunneling between two weakly-linked Bose-Einstein condensates confined in double-well potential traps. The nonlinear interaction between the atoms in each well contributes to a finite chemical potential, which, with consideration of periodic instantons, leads to a remarkably high tunneling frequency. This result can be used to interpret the newly found Macroscopic Quantum Self Trapping (MQST) effect. Also a new kind of first-order crossover between different regions is predicted.Comment: 4 pages, 2 eps figures, final version to appear in Phys. Rev.
    • …
    corecore