39,439 research outputs found
--Oscillations for Correlated Electron Pairs in Disordered Mesoscopic Rings
The full spectrum of two interacting electrons in a disordered mesoscopic
one--dimensional ring threaded by a magnetic flux is calculated numerically.
For ring sizes far exceeding the one--particle localization length we
find several --periodic states whose eigenfunctions exhibit a pairing
effect. This represents the first direct observation of interaction--assisted
coherent pair propagation, the pair being delocalized on the scale of the whole
ring.Comment: 4 pages, uuencoded PostScript, containing 5 figures
A model for the phase separation controlled by doping and the internal chemical pressure in different cuprate superconductors
In the framework of a two-band model, we study the phase separation regime of
different kinds of strongly correlated charge carriers as a function of the
energy splitting between the two sets of bands. The narrow (wide) band
simulates the more localized (more delocalized) type of charge carriers. By
assuming that the internal chemical pressure on the CuO layer due to
interlayer mismatch controls the energy splitting between the two sets of
states, the theoretical predictions are able to reproduce the regime of phase
separation at doping higher than 1/8 in the experimental pressure-doping-
phase diagram of cuprates at large microstrain as it appears in overoxygenated
LaCuO.Comment: 8 pages, 5 figures, submitted to Phys. Rev.
Chlorinated auxins–how does Arabidopsis thaliana deal with them?
Plant hormones have various functions in plants and play crucial roles in all developmental and differentiation stages. Auxins constitute one of the most important groups with the major representative indole-3-acetic acid (IAA). A halogenated derivate of IAA, 4-chloro-indole-3-acetic acid (4-Cl-IAA), has previously been identified in Pisum sativum and other legumes. While the enzymes responsible for the halogenation of compounds in bacteria and fungi are well studied, the metabolic pathways leading to the production of 4-Cl-IAA in plants, especially the halogenating reaction, are still unknown. Therefore, bacterial flavin-dependent tryptophan-halogenase genes were transformed into the model organism Arabidopsis thaliana. The type of chlorinated indole derivatives that could be expected was determined by incubating wild type A. thaliana with different Cl-tryptophan derivatives. We showed that, in addition to chlorinated IAA, chlorinated IAA conjugates were synthesized. Concomitantly, we found that an auxin conjugate synthetase (GH3.3 protein) from A. thaliana was able to convert chlorinated IAAs to amino acid conjugates in vitro. In addition, we showed that the production of halogenated tryptophan (Trp), indole-3-acetonitrile (IAN) and IAA is possible in transgenic A. thaliana in planta with the help of the bacterial halogenating enzymes. Furthermore, it was investigated if there is an effect (i) of exogenously applied Cl-IAA and Cl-Trp and (ii) of endogenously chlorinated substances on the growth phenotype of the plants
Molecular transport and flow past hard and soft surfaces: Computer simulation of model systems
The properties of polymer liquids on hard and soft substrates are
investigated by molecular dynamics simulation of a coarse-grained bead-spring
model and dynamic single-chain-in-mean-field (SCMF) simulations of a soft,
coarse-grained polymer model. Hard, corrugated substrates are modelled by an
FCC Lennard-Jones solid while polymer brushes are investigated as a
prototypical example of a soft, deformable surface. From the molecular
simulation we extract the coarse-grained parameters that characterise the
equilibrium and flow properties of the liquid in contact with the substrate:
the surface and interface tensions, and the parameters of the hydrodynamic
boundary condition. The so-determined parameters enter a continuum description
like the Stokes equation or the lubrication approximation.Comment: 41 pages, 13 figure
Photoionization of tungsten ions: experiment and theory for W
Experimental and theoretical results are reported for single-photon single
ionization of the tungsten ion W. Absolute cross sections have been
measured employing the photon-ion merged-beams setup at the Advanced Light
Source in Berkeley. Detailed photon-energy scans were performed at 200~meV
bandwidth in the 40 -- 105~eV range. Theoretical results have been obtained
from a Dirac-Coulomb R-matrix approach employing basis sets of 730 levels for
the photoionization of W. Calculations were carried out for the
, =2, ground level and the
associated fine-structure levels with =3 and 4 for the W ions. In
addition, cross sections have been calculated for the metastable levels
. Very satisfying agreement of theory and experiment is
found for the photoionization cross section of W which is remarkable
given the complexity of the electronic structure of tungsten ions in low charge
states.Comment: 15 pages, 3 figures, to appear in the Journal of Physics B: Atomic,
Molecular and Optical Physic
- …