43,494 research outputs found
A model for the phase separation controlled by doping and the internal chemical pressure in different cuprate superconductors
In the framework of a two-band model, we study the phase separation regime of
different kinds of strongly correlated charge carriers as a function of the
energy splitting between the two sets of bands. The narrow (wide) band
simulates the more localized (more delocalized) type of charge carriers. By
assuming that the internal chemical pressure on the CuO layer due to
interlayer mismatch controls the energy splitting between the two sets of
states, the theoretical predictions are able to reproduce the regime of phase
separation at doping higher than 1/8 in the experimental pressure-doping-
phase diagram of cuprates at large microstrain as it appears in overoxygenated
LaCuO.Comment: 8 pages, 5 figures, submitted to Phys. Rev.
Equation of state and critical behavior of polymer models: A quantitative comparison between Wertheim's thermodynamic perturbation theory and computer simulations
We present an application of Wertheim's Thermodynamic Perturbation Theory
(TPT1) to a simple coarse grained model made of flexibly bonded Lennard-Jones
monomers. We use both the Reference Hyper-Netted-Chain (RHNC) and Mean
Spherical approximation (MSA) integral equation theories to describe the
properties of the reference fluid. The equation of state, the density
dependence of the excess chemical potential, and the critical points of the
liquid--vapor transition are compared with simulation results and good
agreement is found. The RHNC version is somewhat more accurate, while the MSA
version has the advantage of being almost analytic. We analyze the scaling
behavior of the critical point of chain fluids according to TPT1 and find it to
reproduce the mean field exponents: The critical monomer density is predicted
to vanish as upon increasing the chain length while the critical
temperature is predicted to reach an asymptotic finite temperature that is
attained as . The predicted asymptotic finite critical temperature
obtained from the RHNC and MSA versions of TPT1 is found to be in good
agreement with the point of our polymer model as obtained from the
temperature dependence of the single chain conformations.Comment: to appear in J.Chem.Phy
--Oscillations for Correlated Electron Pairs in Disordered Mesoscopic Rings
The full spectrum of two interacting electrons in a disordered mesoscopic
one--dimensional ring threaded by a magnetic flux is calculated numerically.
For ring sizes far exceeding the one--particle localization length we
find several --periodic states whose eigenfunctions exhibit a pairing
effect. This represents the first direct observation of interaction--assisted
coherent pair propagation, the pair being delocalized on the scale of the whole
ring.Comment: 4 pages, uuencoded PostScript, containing 5 figures
Formation of Chain-Folded Structures from Supercooled Polymer Melts
The formation of chain-folded structures from the melt is observed in
molecular dynamics simulations resembling the lamellae of polymer crystals.
Crystallization and subsequent melting temperatures are related linearly to the
inverse lamellar thickness. Analysis of the single chain conformations in the
crystal shows that most chains reenter the same lamella by tight backfolds.
Simulations are performed with a mesoscopic bead-spring model including a
specific angle bending potential. They demonstrate that chain stiffness alone,
without an attractive inter-particle potential, is a sufficient driving force
for the formation of chain-folded lamellae.Comment: 4 pages, 5 figure
COMPLETE SOLUTION OF THE XXZ-MODEL ON FINITE RINGS. DYNAMICAL STRUCTURE FACTORS AT ZERO TEMPERATURE.
The finite size effects of the dynamical structure factors in the XXZ-model
are studied in the euclidean time -representation. Away from the
critical momentum finite size effects turn out to be small except for
the large limit. The large finite size effects at the critical momentum
signal the emergence of infrared singularities in the spectral
-representation of the dynamical structure factors.Comment: PostScript file with 12 pages + 11 figures uuencoded compresse
Improving LLR Tests of Gravitational Theory
Accurate analysis of precision ranges to the Moon has provided several tests
of gravitational theory including the Equivalence Principle, geodetic
precession, parameterized post-Newtonian (PPN) parameters and ,
and the constancy of the gravitational constant {\it G}. Since the beginning of
the experiment in 1969, the uncertainties of these tests have decreased
considerably as data accuracies have improved and data time span has
lengthened. We are exploring the modeling improvements necessary to proceed
from cm to mm range accuracies enabled by the new Apache Point Observatory
Lunar Laser-ranging Operation (APOLLO) currently under development in New
Mexico. This facility will be able to make a significant contribution to the
solar system tests of fundamental and gravitational physics. In particular, the
Weak and Strong Equivalence Principle tests would have a sensitivity
approaching 10, yielding sensitivity for the SEP violation parameter
of , general relativistic effects would
be tested to better than 0.1%, and measurements of the relative change in the
gravitational constant, , would be % the inverse age of the
universe. Having this expected accuracy in mind, we discusses the current
techniques, methods and existing physical models used to process the LLR data.
We also identify the challenges for modeling and data analysis that the LLR
community faces today in order to take full advantage of the new APOLLO ranging
station.Comment: 15 pages, 3 figures, talk presented at 2003 NASA/JPL Workshop on
Fundamental Physics in Space, April 14-16, 2003, Oxnard, C
- …