43,494 research outputs found

    A model for the phase separation controlled by doping and the internal chemical pressure in different cuprate superconductors

    Full text link
    In the framework of a two-band model, we study the phase separation regime of different kinds of strongly correlated charge carriers as a function of the energy splitting between the two sets of bands. The narrow (wide) band simulates the more localized (more delocalized) type of charge carriers. By assuming that the internal chemical pressure on the CuO2_2 layer due to interlayer mismatch controls the energy splitting between the two sets of states, the theoretical predictions are able to reproduce the regime of phase separation at doping higher than 1/8 in the experimental pressure-doping-TcT_c phase diagram of cuprates at large microstrain as it appears in overoxygenated La2_2CuO4_4.Comment: 8 pages, 5 figures, submitted to Phys. Rev.

    Equation of state and critical behavior of polymer models: A quantitative comparison between Wertheim's thermodynamic perturbation theory and computer simulations

    Full text link
    We present an application of Wertheim's Thermodynamic Perturbation Theory (TPT1) to a simple coarse grained model made of flexibly bonded Lennard-Jones monomers. We use both the Reference Hyper-Netted-Chain (RHNC) and Mean Spherical approximation (MSA) integral equation theories to describe the properties of the reference fluid. The equation of state, the density dependence of the excess chemical potential, and the critical points of the liquid--vapor transition are compared with simulation results and good agreement is found. The RHNC version is somewhat more accurate, while the MSA version has the advantage of being almost analytic. We analyze the scaling behavior of the critical point of chain fluids according to TPT1 and find it to reproduce the mean field exponents: The critical monomer density is predicted to vanish as n−1/2n^{-1/2} upon increasing the chain length nn while the critical temperature is predicted to reach an asymptotic finite temperature that is attained as n−1/2n^{-1/2}. The predicted asymptotic finite critical temperature obtained from the RHNC and MSA versions of TPT1 is found to be in good agreement with the Θ\Theta point of our polymer model as obtained from the temperature dependence of the single chain conformations.Comment: to appear in J.Chem.Phy

    h/2eh/2e--Oscillations for Correlated Electron Pairs in Disordered Mesoscopic Rings

    Full text link
    The full spectrum of two interacting electrons in a disordered mesoscopic one--dimensional ring threaded by a magnetic flux is calculated numerically. For ring sizes far exceeding the one--particle localization length L1L_1 we find several h/2eh/2e--periodic states whose eigenfunctions exhibit a pairing effect. This represents the first direct observation of interaction--assisted coherent pair propagation, the pair being delocalized on the scale of the whole ring.Comment: 4 pages, uuencoded PostScript, containing 5 figures

    Formation of Chain-Folded Structures from Supercooled Polymer Melts

    Full text link
    The formation of chain-folded structures from the melt is observed in molecular dynamics simulations resembling the lamellae of polymer crystals. Crystallization and subsequent melting temperatures are related linearly to the inverse lamellar thickness. Analysis of the single chain conformations in the crystal shows that most chains reenter the same lamella by tight backfolds. Simulations are performed with a mesoscopic bead-spring model including a specific angle bending potential. They demonstrate that chain stiffness alone, without an attractive inter-particle potential, is a sufficient driving force for the formation of chain-folded lamellae.Comment: 4 pages, 5 figure

    COMPLETE SOLUTION OF THE XXZ-MODEL ON FINITE RINGS. DYNAMICAL STRUCTURE FACTORS AT ZERO TEMPERATURE.

    Full text link
    The finite size effects of the dynamical structure factors in the XXZ-model are studied in the euclidean time (τ)(\tau)-representation. Away from the critical momentum p=πp=\pi finite size effects turn out to be small except for the large τ\tau limit. The large finite size effects at the critical momentum p=πp=\pi signal the emergence of infrared singularities in the spectral (ω)(\omega)-representation of the dynamical structure factors.Comment: PostScript file with 12 pages + 11 figures uuencoded compresse

    Improving LLR Tests of Gravitational Theory

    Full text link
    Accurate analysis of precision ranges to the Moon has provided several tests of gravitational theory including the Equivalence Principle, geodetic precession, parameterized post-Newtonian (PPN) parameters γ\gamma and β\beta, and the constancy of the gravitational constant {\it G}. Since the beginning of the experiment in 1969, the uncertainties of these tests have decreased considerably as data accuracies have improved and data time span has lengthened. We are exploring the modeling improvements necessary to proceed from cm to mm range accuracies enabled by the new Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) currently under development in New Mexico. This facility will be able to make a significant contribution to the solar system tests of fundamental and gravitational physics. In particular, the Weak and Strong Equivalence Principle tests would have a sensitivity approaching 10−14^{-14}, yielding sensitivity for the SEP violation parameter η\eta of ∼3×10−5\sim 3\times 10^{-5}, v2/c2v^2/c^2 general relativistic effects would be tested to better than 0.1%, and measurements of the relative change in the gravitational constant, G˙/G\dot{G}/G, would be ∼0.1\sim0.1% the inverse age of the universe. Having this expected accuracy in mind, we discusses the current techniques, methods and existing physical models used to process the LLR data. We also identify the challenges for modeling and data analysis that the LLR community faces today in order to take full advantage of the new APOLLO ranging station.Comment: 15 pages, 3 figures, talk presented at 2003 NASA/JPL Workshop on Fundamental Physics in Space, April 14-16, 2003, Oxnard, C
    • …
    corecore