35 research outputs found

    Nucleation at the DNA supercoiling transition

    Full text link
    Twisting DNA under a constant applied force reveals a thermally activated transition into a state with a supercoiled structure known as a plectoneme. Using transition state theory, we predict the rate of this plectoneme nucleation to be of order 10^4 Hz. We reconcile this with experiments that have measured hopping rates of order 10 Hz by noting that the viscosity of the bead used to manipulate the DNA limits the measured rate. We find that the intrinsic bending caused by disorder in the base-pair sequence is important for understanding the free energy barrier that governs the transition. Both analytic and numerical methods are used in the calculations. We provide extensive details on the numerical methods for simulating the elastic rod model with and without disorder.Comment: 18 pages, 15 figure

    Novel missense mutations in the glycine receptor β subunit gene (GLRB) in startle disease

    Get PDF
    Startle disease is a rare, potentially fatal neuromotor disorder characterized by exaggerated startle reflexes and hypertonia in response to sudden unexpected auditory, visual or tactile stimuli. Mutations in the GlyR alpha(1) subunit gene (GLRA1) are the major cause of this disorder, since remarkably few individuals with mutations in the GlyR beta subunit gene (GLRB) have been found to date. Systematic DNA sequencing of GLRB in individuals with hyperekplexia revealed new missense mutations in GLRB, resulting in M177R, L285R and W310C substitutions. The recessive mutation M177R results in the insertion of a positively-charged residue into a hydrophobic pocket in the extracellular domain, resulting in an increased EC50 and decreased maximal responses of alpha(1)beta GlyRs. The de novo mutation L285R results in the insertion of a positively-charged side chain into the pore-lining 9' position. Mutations at this site are known to destabilize the channel closed state and produce spontaneously active channels. Consistent with this, we identified a leak conductance associated with spontaneous GlyR activity in cells expressing alpha(1)beta(L285R) GlyRs. Peak currents were also reduced for alpha(1)beta(L285R) GlyRs although glycine sensitivity was normal. W310C was predicted to interfere with hydrophobic side-chain stacking between M1, M2 and M3. We found that W310C had no effect on glycine sensitivity, but reduced maximal currents in alpha(1)beta GlyRs in both homozygous (alpha(1)beta(W310C)) and heterozygous (alpha(1)beta beta(W310C)) stoichiometries. Since mild startle symptoms were reported in W310C carriers, this may represent an example of incomplete dominance in startle disease, providing a potential genetic explanation for the 'minor' form of hyperekplexia. (C) 2012 Elsevier Inc. All rights reserved

    The human glycine receptor subunit alpha3. Glra3 gene structure, chromosomal localization, and functional characterization of alternative transcripts.

    Full text link
    The neuronal glycine receptor is a ligand-gated chloride channel composed of ligand binding alpha and structural beta polypeptides. Homology screening of a human fetal brain cDNA library resulted in the identification of two alternative splice variants of the glycine receptor alpha3 subunit. The amino acid sequence predicted for the alpha3L variant was largely identical to the corresponding rat subunit. In contrast, the novel splice variant alpha3K lacked the coding sequence for 15 amino acids located within the cytoplasmic loop connecting transmembrane spanning region 3 (TM3) and TM4. Using P1 artificial chromosome (PAC) clones, the structure of the GLRA3 gene was elucidated and its locus assigned to human chromosomal bands 4q33-q34 by fluorescence in situ hybridization. Two transcripts of 2.4 and 9 kilobases, corresponding to alpha3L and alpha3K, respectively, were identified and found to be widely distributed throughout the human central nervous system. Structural analysis of the GLRA3 gene revealed that the alpha3K transcript resulted from a complex splice event where excision of the novel exon 8A comprising the alternative sequence of 45 base pairs coincides with the persistence of a large intronic sequence in the 3'-untranslated region. Functional expression in HEK 293 cells of alpha3L and alpha3K subunits resulted in the formation of glycine-gated chloride channels that differed significantly in desensitization behavior, thus defining the cytoplasmic loop as an important determinant of channel inactivation kinetics

    A Retroelement Modifies Pre-mRNA Splicing

    Get PDF
    The glycine receptor-deficient mutant mouse spastic carries a full-length long interspersed nuclear element (LINE1) retrotransposon in intron 6 of the glycine receptor β subunit gene, Glrb(spa). The mutation arose in the C57BL/6J strain and is associated with skipping of exon 6 or a combination of the exons 5 and 6, thus resulting in a translational frameshift within the coding regions of the GlyR β subunit. The effect of the Glrb(spa) LINE1 insertion on pre-mRNA splicing was studied using a minigene approach. Sequence comparison as well as motif prediction and mutational analysis revealed that in addition to the LINE1 insertion the inactivation of an exonic splicing enhancer (ESE) within exon 6 is required for skipping of exon 6. Reconstitution of the ESE by substitution of a single residue was sufficient to prevent exon skipping. In addition to the ESE, two regions within the 5′ and 3′ UTR of the LINE1 were shown to be critical determinants for exon skipping, indicating that LINE1 acts as efficient modifier of subtle endogenous splicing phenotypes. Thus, the spastic allele of the murine glycine receptor β subunit gene is a two-hit mutation, where the hypomorphic alteration in an ESE is amplified by the insertion of a LINE1 element in the adjacent intron. Conversely, the LINE1 effect on splicing may be modulated by individual polymorphisms, depending on the insertional environment within the host genome

    Transient neuromotor phenotype in transgenic spastic mice expressing low levels of glycine receptor β‐subunit : an animal model of startle disease

    Get PDF
    Startle disease or hereditary hyperekplexia has been shown to result from mutations in the α1‐subunit gene of the inhibitory glycine receptor (GlyR). In hyperekplexia patients, neuromotor symptoms generally become apparent at birth, improve with age, and often disappear in adulthood. Loss‐of‐function mutations of GlyR α or β‐subunits in mice show rather severe neuromotor phenotypes. Here, we generated mutant mice with a transient neuromotor deficiency by introducing a GlyR β transgene into the spastic mouse (spa/spa), a recessive mutant carrying a transposon insertion within the GlyR β‐subunit gene. In spa/spa TG456 mice, one of three strains generated with this construct, which expressed very low levels of GlyR β transgene‐dependent mRNA and protein, the spastic phenotype was found to depend upon the transgene copy number. Notably, mice carrying two copies of the transgene showed an age‐dependent sensitivity to tremor induction, which peaked at ∼ 3–4 weeks postnatally. This closely resembles the development of symptoms in human hyperekplexia patients, where motor coordination significantly improves after adolescence. The spa/spa TG456 line thus may serve as an animal model of human startle disease
    corecore