551 research outputs found

    BL Lac Objects in the Synchrotron Proton Blazar Model

    Get PDF
    We calculate the spectral energy distribution (SED) of electromagnetic radiation and the spectrum of high energy neutrinos from BL Lac objects in the context of the Synchrotron Proton Blazar Model. In this model, the high energy hump of the SED is due to accelerated protons, while most of the low energy hump is due to synchrotron radiation by co-accelerated electrons. To accelerate protons to sufficiently high energies to produce the high energy hump, rather high magnetic fields are required. Assuming reasonable emission region volumes and Doppler factors, we then find that in low-frequency peaked BL Lacs (LBLs), which have higher luminosities than high-frequency peaked BL Lacs (HBLs), there is a significant contribution to the high frequency hump of the SED from pion photoproduction and subsequent cascading, including synchrotron radiation by muons. In contrast, in HBLs we find that the high frequency hump of the SED is dominated by proton synchrotron radiation. We are able to model the SED of typical LBLs and HBLs, and to model the famous 1997 flare of Markarian 501. We also calculate the expected neutrino output of typical BL Lac objects, and estimate the diffuse neutrino intensity due to all BL Lacs. Because pion photoproduction is inefficient in HBLs, as protons lose energy predominantly by synchrotron radiation, the contribution of LBLs dominates the diffuse neutrino intensity. We suggest that nearby LBLs may well be observable with future high-sensitivity TeV gamma-ray telescopes.Comment: 33 pages, 20 Figures. Astropart. Phys., accepte

    EGRET Gamma-Ray Blazars: Luminosity Function and Contribution to the Extragalactic Gamma-Ray Background

    Get PDF
    We describe the properties of the blazars detected by EGRET and summarize the results on the calculations of the evolution and luminosity function of these sources. Of the large number of possible origins of extragalactic diffuse gamma-ray emission, it has been postulated that active galaxies might be one of the most likely candidates. However, some of our recent analyses indicate that only 25 percent of the diffuse extragalactic emission measured by SAS-2 and EGRET can be attributed to unresolved gamma-ray blazars. Therefore, other sources of diffuse extragalactic gamma-ray emission must exist. We present a summary of these results in this article.Comment: 4 pages, accepted for publication in Astroparticle Physic

    Zum Konvergenzverhalten der Finite-Element-Lösungen eines Rißproblems bei gleichmäßiger und adaptiver Netzverfeinerung

    Get PDF
      &nbsp

    On photohadronic processes in astrophysical environments

    Full text link
    We discuss the first applications of our newly developed Monte Carlo event generator SOPHIA to multiparticle photoproduction of relativistic protons with thermal and power law radiation fields. The measured total cross section is reproduced in terms of excitation and decay of baryon resonances, direct pion production, diffractive scattering, and non-diffractive multiparticle production. Non--diffractive multiparticle production is described using a string fragmentation model. We demonstrate that the widely used `Δ\Delta--approximation' for the photoproduction cross section is reasonable only for a restricted set of astrophysical applications. The relevance of this result for cosmic ray propagation through the microwave background and hadronic models of active galactic nuclei and gamma-ray bursts is briefly discussed.Comment: 9 pages including 4 embedded figures, submitted to PAS

    Interactions of UHE cosmic ray nuclei with radiation during acceleration: consequences on the spectrum and composition

    Get PDF
    In this paper, we study the diffusive shock acceleration of cosmic-ray protons and nuclei, taking into account all the relevant interaction processes with photon backgrounds. We investigate how the competition between protons and nuclei is modified by the acceleration parameters such as the acceleration rate, its rigidity dependence, the photon density and the confinement capability of the sources. We find that in the case of interaction-limited acceleration processes protons are likely to be accelerated to higher energies than nuclei, whereas for confinement-limited acceleration nuclei are accelerated to higher energies than protons. Finally, we discuss our results in the context of possible astrophysical accelerators, and in the light of recent cosmic-ray data.Comment: 14 pages, 11 figures A few paragraphs and one figure added for clarity, figures slightly redesigned, no changes in the result

    Probabilistische Design-Methoden und ihre Anwendung bei der strukturmechanischen Auslegung von Turbinenschaufeln

    Get PDF
    Thermische und mechanische Randbedingungen sowie Materialeigenschaften und geometrische Großen unterliegen in realen Bauteilen einer gewissen Streuung. Während diese bei deterministischen strukturmechanischen Analysen, wie sie heute fast ausschliesslich Verwendung finden, nicht berücksichtigt werden, sondern lediglich eine „Musterantwort“ der Struktur ermittelt wird, können mit probabilistischen Design-Methoden auch die Verteilungsfunktionen der stochastischen Eingangsgrößen in die Strukturanalyse einbezogen werden. Als Resultat erhält man die empirischen Verteilungen der Ergebnisgroßen sowie die Sensitivitäten der stochastischen Modellparameter. Im Beitrag werden mehrere probabilistische Design-Methoden erläutert und deren Anwendbarkeit auf reale komplexe Bauteilberechnungen beurteilt. Am Beispiel einer probabilistischen Analyse der zyklischen Lebensdauer einer Gasturbinenschaufel werden schliesslich die Herausforderungen bei der Anwendung der direkten Monte-Carlo-Simulationsmethode auf reale Bauteile dargestellt sowie die Ergebnisse und die Vorgehensweise kritisch diskutiert

    High energy neutrino early afterglows from gamma-ray bursts revisited

    Get PDF
    The high energy neutrino emission from gamma-ray bursts (GRBs) has been expected in various scenarios. In this paper, we study the neutrino emission from early afterglows of GRBs, especially under the reverse-forward shock model and late prompt emission model. In the former model, the early afterglow emission occurs due to dissipation made by an external shock with the circumburst medium (CBM). In the latter model, internal dissipation such as internal shocks produces the shallow decay emission in early afterglows. We also discuss implications of recent Swift observations for neutrino signals in detail. Future neutrino detectors such as IceCube may detect neutrino signals from early afterglows, especially under the late prompt emission model, while the detection would be difficult under the reverse-forward shock model. Contribution to the neutrino background from the early afterglow emission may be at most comparable to that from the prompt emission unless the outflow making the early afterglow emission loads more nonthermal protons, and it may be important in the very high energies. Neutrino-detections are inviting because they could provide us with not only information on baryon acceleration but also one of the clues to the model of early afterglows. Finally, we compare various predictions for the neutrino background from GRBs, which are testable by future neutrino-observations.Comment: 18 pages, 12 figures, accepted for publication in PR

    High Energy Neutrino Emission and Neutrino Background from Gamma-Ray Bursts in the Internal Shock Model

    Get PDF
    High energy neutrino emission from GRBs is discussed. In this paper, by using the simulation kit GEANT4, we calculate proton cooling efficiency including pion-multiplicity and proton-inelasticity in photomeson production. First, we estimate the maximum energy of accelerated protons in GRBs. Using the obtained results, neutrino flux from one burst and a diffuse neutrino background are evaluated quantitatively. We also take account of cooling processes of pion and muon, which are crucial for resulting neutrino spectra. We confirm the validity of analytic approximate treatments on GRB fiducial parameter sets, but also find that the effects of multiplicity and high-inelasticity can be important on both proton cooling and resulting spectra in some cases. Finally, assuming that the GRB rate traces the star formation rate, we obtain a diffuse neutrino background spectrum from GRBs for specific parameter sets. We introduce the nonthermal baryon-loading factor, rather than assume that GRBs are main sources of UHECRs. We find that the obtained neutrino background can be comparable with the prediction of Waxman & Bahcall, although our ground in estimation is different from theirs. In this paper, we study on various parameters since there are many parameters in the model. The detection of high energy neutrinos from GRBs will be one of the strong evidences that protons are accelerated to very high energy in GRBs. Furthermore, the observations of a neutrino background has a possibility not only to test the internal shock model of GRBs but also to give us information about parameters in the model and whether GRBs are sources of UHECRs or not.Comment: 14 pages, 17 figures, accepted for publication in PRD, with extended descriptions. Conclusions unchange

    Channeled blast wave behavior based on longitudinal instabilities

    Get PDF
    To address the important issue of how kinetic energy of collimated blast waves is converted into radiation, Pohl & Schlickeiser (2000) have recently investigated the relativistic two-stream instability of electromagnetic turbulence. They have shown that swept-up matter is quickly isotropized in the blast wave, which provides relativistic particles and, as a result, radiation. Here we present new calculations for the electrostatic instability in such systems. It is shown that the electrostatic instability is faster than the electromagnetic instability for highly relativistic beams. However, even after relaxation of the beam via the faster electrostatic turbulence, the beam is still unstable with respect to the electromagnetic waves, thus providing the isotropization required for efficient production of radiation. While the emission spectra in the model of Pohl and Schlickeiser have to be modified, the basic characteristics persist.Comment: Astronomy & Astrophysics, in pres
    corecore