24 research outputs found

    EJP18 peptide derived from the juxtamembrane domain of epidermal growth factor receptor represents a novel membrane-active cell-penetrating peptide

    Get PDF
    Membrane-active peptides have been extensively studied to probe protein–membrane interactions, to act as antimicrobial agents and cell-penetrating peptides (CPPs) for the delivery of therapeutic agents to cells. Hundreds of membrane-active sequences acting as CPPs have now been described including bioportides that serve as single entity modifiers of cell physiology at the intracellular level. Translation of promising CPPs in pre-clinical studies have, however, been disappointing as only few identified delivery systems have progressed to clinical trials. To search for novel membrane-active peptides a sequence from the EGFR juxtamembrane region was identified (named EJP18), synthesised, and examined in its L- and D-form for its ability to mediate the delivery of a small fluorophore and whole proteins to cancer cell lines. Initial studies identified the peptide as being highly membrane-active causing extensive and rapid plasma membrane reorganisation, blebbing, and toxicity. At lower, non-toxic concentrations the peptides outperformed the well-characterised CPP octaarginine in cellular delivery capacity for a fluorophore or proteins that were associated with the peptide covalently or via ionic interactions. EJP18 thus represents a novel membrane-active peptide that may be used as a naturally derived model for biophysical protein–membrane interactions or for delivery of cargo into cells for therapeutic or diagnostic applications

    Mucoadhesive electrospun patch delivery of lidocaine to the oral mucosa and investigation of spatial distribution in tissue using MALDI-mass spectrometry imaging

    Get PDF
    Many oral mucosal conditions cause considerable and prolonged pain that to date has been difficult to alleviate via topical delivery, and the use of injection causes many patients dental anxiety and needle-prick pain. Therefore, developing a non-injectable drug delivery system as an alternative administration procedure may vastly improve the health and wellbeing of these patients. Recent advances in the development of mucoadhesive electrospun patches for the direct delivery of therapeutics to the oral mucosa offer a potential solution, but as yet, the release of local anaesthetics from this system and their uptake by oral tissue has not been demonstrated. Here, we demonstrate the fabrication of lidocaine-loaded electrospun fibre patches, drug release, and subsequent uptake and permeation through porcine buccal mucosa. Lidocaine HCl and lidocaine base were incorporated into the electrospun patches to evaluate the difference in drug permeation for the two drug compositions. Lidocaine released from the lidocaine HCl-containing electrospun patches was significantly quicker than from the lidocaine base patches, with double the amount of drug released from the lidocaine HCl patches in the first 15 minutes (0.16 ± 0.04 mg) compared to from the lidocaine base patches (0.07 ± 0.01 mg). The permeation of lidocaine from the lidocaine HCl electrospun patches through ex vivo porcine buccal mucosa was also detected in 15 minutes, whereas permeation of lidocaine from the lidocaine base patch was not detected. Matrix-assisted laser desorption ionisation – mass spectrometry imaging (MALDI-MSI) was used to investigate localisation of lidocaine within oral tissue. Lidocaine in solution as well as from the mucoadhesive patch penetrated into buccal mucosal tissue in a time-dependent manner and was detectable in the lamina propria after only 15 minutes. Moreover, the lidocaine released from lidocaine HCl electrospun patches retained biological activity, inhibiting veratridine-mediated opening of voltage-gated sodium channels in SH-SY5Y neuroblastoma cells. These data suggest that a mucoadhesive electrospun patch may be used as a vehicle for rapid uptake and sustained anaesthetic drug delivery and may reduce the need for injection
    corecore