15 research outputs found
Cone beam CT based dose calculation in the thorax region
Background and purpose: The limited image quality in Cone Beam CT (CBCT) stemming primarily from scattered radiation hinders accurate CBCT based dose calculation in radiotherapy. We investigated the use of a stoichiometric calibration for dose calculation on CBCT images of lung cancer patients. Materials and methods: CBCT calibrations were performed with thorax scan protocols, using a phantom with approximately the diameter of an average human thorax and a central cavity simulating the thoracic cavity. Thus scatter conditions resembling those in clinical thorax CBCT scans were simulated. A published stoichiometric parametrization was used. A treatment plan was simulated on CBCT and CT scans of an anthropomorphic phantom, the dose distributions were calculated, and clinically relevant DVH parameters were compared. Twelve lung cancer patients had surveillance CT scans (s-CT) taken twice during their treatment course in addition to daily setup CBCTs. Dose calculations were performed on the s-CTs and the corresponding CBCTs taken on the same day, and DVH parameters were compared. Results: Eighty percent of CBCT DVH parameters found for the phantom were within ±1% of CT doses, and 98% were within ±3%. For patients, the median CT/CBCT dose difference was within ±2%, and 98% of DVH parameters were within ±4%. Minimum dose to the tumor was underestimated (median 1.9%) on CBCT, while maximum doses to most organs at risk were slightly overestimated. Conclusion: Direct dose calculations on CBCTs of lung cancer patients were feasible within ∼4% accuracy using a simple calibration method, which is easily implemented in a clinical setting
Heart and Lung Dose as Predictors of Overall Survival in Patients With Locally Advanced Lung Cancer. A National Multicenter Study
INTRODUCTION: It is an ongoing debate how much lung and heart irradiation impact overall survival (OS) after definitive radiotherapy for lung cancer. This study uses a large national cohort of patients with locally advanced NSCLC to investigate the association between OS and irradiation of lung and heart.METHODS: Treatment plans were acquired from six Danish radiotherapy centers, and patient characteristics were obtained from national registries. A hybrid segmentation tool automatically delineated the heart and substructures. Dose-volume histograms for all structures were extracted and analyzed using principal component analyses (PCAs). Parameter selection for a multivariable Cox model for OS prediction was performed using cross-validation based on bootstrapping.RESULTS: The population consisted of 644 patients with a median survival of 26 months (95% confidence interval [CI]: 24-29). The cross-validation selected two PCA variables to be included in the multivariable model. PCA1 represented irradiation of the heart and affected OS negatively (hazard ratio, 1.14; 95% CI: 1.04-1.26). PCA2 characterized the left-right balance (right atrium and left ventricle) irradiation, showing better survival for tumors near the right side (hazard ratio, 0.92; 95% CI: 0.84-1.00). Besides the two PCA variables, the multivariable model included age, sex, body-mass index, performance status, tumor dose, and tumor volume.CONCLUSIONS: Besides the classic noncardiac risk factors, lung and heart doses had a negative impact on survival, while it is suggested that the left side of the heart is a more radiation dose-sensitive region. The data indicate that overall heart irradiation should be reduced to improve the OS if possible.</p
Variation in current prescription practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer: Recommendations for prescribing and recording according to the ACROP guideline and ICRU report 91
Background and purpose: In 2017 the ACROP guideline on SBRT for peripherally located early stage NSCLC was published. Later that year ICRU-91 about prescribing, recording and reporting was published. The purpose of this study is to quantify the current variation in prescription practice in the institutions that contributed to the ACROP guideline and to establish the link between the ACROP and ICRU-91 recommendations. Material and methods: From each of the eight participating centres, 15 SBRT plans for stage I NSCLC were analyzed. Plans were generated following the institutional protocol, centres prescribed 3 × 13.5 Gy, 3 × 15 Gy, 3 × 17 Gy or 3 × 18 Gy. Dose parameters of the target volumes were reported as recommended by ICRU-91 and also converted to BED10Gy. Results: The intra-institutional variance in D98%, Dmean and D2% of the PTV and GTV/ITV is substantially smaller than the inter-institutional spread, indicating well protocollised planning procedures are followed. The median values per centre ranged from 56.1 Gy to 73.1 Gy (D2%), 50.4 Gy to 63.3 Gy (Dmean) and 40.5 Gy to 53.6 Gy (D98%) for the PTV and from 57.1 Gy to 73.6 Gy (D2%), 53.7 Gy to 68.7 Gy (Dmean) and 48.5 Gy to 62.3 Gy (D98%) for the GTV/ITV. Comparing the variance in PTV D98% with the variance in GTV Dmean per centre, using an F-test, shows that four centres have a larger variance in GTV Dmean, while one centre has a larger variance in PTV D98% (p values <0.01). This shows some centres focus on achieving a constant PTV coverage while others aim at a constant GTV coverage. Conclusion: More detailed recommendations for dose planning and reporting of lung SBRT in line with ICRU-91 were formulated, including a minimum PTV D98% of 100 Gy BED10Gy and minimum GTV/ITV mean dose of 150 Gy BED10Gy and a D2% in the range of 60–70 Gy
Variation in current prescription practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer: Recommendations for prescribing and recording according to the ACROP guideline and ICRU report 91
Background and purpose
In 2017 the ACROP guideline on SBRT for peripherally located early stage NSCLC was published. Later that year ICRU-91 about prescribing, recording and reporting was published. The purpose of this study is to quantify the current variation in prescription practice in the institutions that contributed to the ACROP guideline and to establish the link between the ACROP and ICRU-91 recommendations.
Material and methods
From each of the eight participating centres, 15 SBRT plans for stage I NSCLC were analyzed. Plans were generated following the institutional protocol, centres prescribed 3 × 13.5 Gy, 3 × 15 Gy, 3 × 17 Gy or 3 × 18 Gy. Dose parameters of the target volumes were reported as recommended by ICRU-91 and also converted to BED10Gy.
Results
The intra-institutional variance in D98%, Dmean and D2% of the PTV and GTV/ITV is substantially smaller than the inter-institutional spread, indicating well protocollised planning procedures are followed. The median values per centre ranged from 56.1 Gy to 73.1 Gy (D2%), 50.4 Gy to 63.3 Gy (Dmean) and 40.5 Gy to 53.6 Gy (D98%) for the PTV and from 57.1 Gy to 73.6 Gy (D2%), 53.7 Gy to 68.7 Gy (Dmean) and 48.5 Gy to 62.3 Gy (D98%) for the GTV/ITV.
Comparing the variance in PTV D98% with the variance in GTV Dmean per centre, using an F-test, shows that four centres have a larger variance in GTV Dmean, while one centre has a larger variance in PTV D98% (p values <0.01). This shows some centres focus on achieving a constant PTV coverage while others aim at a constant GTV coverage.
Conclusion
More detailed recommendations for dose planning and reporting of lung SBRT in line with ICRU-91 were formulated, including a minimum PTV D98% of 100 Gy BED10Gy and minimum GTV/ITV mean dose of 150 Gy BED10Gy and a D2% in the range of 60–70 Gy