138 research outputs found
Discrete element modeling and fibre optical measurements for fluidized bed spray granulation
Spout fluidized beds are frequently used for the production of granules or\ud
particles through granulation. The products find application in a large variety of\ud
applications, for example detergents, fertilizers, pharmaceuticals and food. Spout fluidized\ud
beds have a number of advantageous properties, such as a high mobility of the particles,\ud
which prevents undesired agglomeration and yields excellent heat transfer properties. The\ud
particle growth mechanism in a spout fluidized bed as function of particle-droplet\ud
interaction has a profound influence on the particle morphology and thus on the product\ud
quality. Nevertheless, little is known about the details of the granulation process. This is\ud
mainly due to the fact that the granulation process is not visually accessible. In this work\ud
we use fundamental, deterministic models to enable the detailed investigation of\ud
granulation behaviour in a spout fluidized bed. A discrete element model is used\ud
describing the dynamics of the continuous gas-phase and the discrete droplets and\ud
particles. For each element momentum balances are solved. The momentum transfer\ud
among each of the three phases is described in detail at the level of individual elements.\ud
The results from the discrete element model simulations are compared with local\ud
measurements of particle volume fractions as well as particle velocities by using a novel\ud
fibre optical probe in a fluidized bed of 400 mm I.D. Simulations and experiments were\ud
carried out for two different cases using Geldart B type aluminium oxide particles: a\ud
freely bubbling fluidized bed and a spout fluidized bed with the presence of droplets. It is\ud
demonstrated how the discrete element model can be used to obtain information about the\ud
interaction of the discrete phases, i.e. the growth zone in a spout fluidized bed. Eventually\ud
this kind of information can be used to obtain closure information required in more coarse\ud
grained model
Comparison of fibre optical measurements and discrete element simulations for the study of granulation in a spout fluidized bed
Spout fluidized beds are frequently used for the production of granules or particles through granulation. The products find application in a large variety of applications, for example detergents, fertilizers, pharmaceuticals and food. Spout fluidized beds have a number of advantageous properties, such as a high mobility of the particles, which prevents undesired agglomeration and yields excellent heat transfer properties. The particle growth mechanism in a spout fluidized bed as function of particle-droplet interaction has a profound influence on the particle morphology and thus on the product quality. Nevertheless, little is known about the details of the granulation process. This is mainly due to the fact that the granulation process is not visually accessible. In this work we use fundamental, deterministic models to enable the detailed investigation of granulation behaviour in a spout fluidized bed. A discrete element model is used describing the dynamics of the continuous gas-phase and the discrete droplets and particles. For each element momentum balances are solved. The momentum transfer among each of the three phases is described in detail at the level of individual elements. The results from the discrete element model simulations are compared with local measurements of particle volume fractions as well as particle velocities by using a novel fibre optical probe in a fluidized bed of 400 mm I.D. Simulations and experiments were carried out for three different cases using Geldart B type aluminium oxide particles: a freely bubbling fluidized bed; a spout fluidized bed without the presence of droplets and a spout fluidized bed with the presence of droplets. It is demonstrated how the discrete element model can be used to obtain information about the interaction of the discrete phases, i.e. the growth zone in a spout fluidized bed. Eventually this kind of information can be used to obtain closure information required in more coarse grained models
Probing the SELEX Process with Next-Generation Sequencing
Background SELEX is an iterative process in which highly diverse synthetic nucleic acid libraries are selected over many rounds to finally identify aptamers with desired properties. However, little is understood as how binders are enriched during the selection course. Next-generation sequencing offers the opportunity to open the black box and observe a large part of the population dynamics during the selection process. Methodology We have performed a semi-automated SELEX procedure on the model target streptavidin starting with a synthetic DNA oligonucleotide library and compared results obtained by the conventional analysis via cloning and Sanger sequencing with next-generation sequencing. In order to follow the population dynamics during the selection, pools from all selection rounds were barcoded and sequenced in parallel. Conclusions High affinity aptamers can be readily identified simply by copy number enrichment in the first selection rounds. Based on our results, we suggest a new selection scheme that avoids a high number of iterative selection rounds while reducing time, PCR bias, and artifacts
The Retrohoming of Linear Group II Intron RNAs in Drosophila melanogaster Occurs by Both DNA Ligase 4–Dependent and –Independent Mechanisms
Mobile group II introns are bacterial retrotransposons that are thought to have invaded early eukaryotes and evolved into introns and retroelements in higher organisms. In bacteria, group II introns typically retrohome via full reverse splicing of an excised intron lariat RNA into a DNA site, where it is reverse transcribed by the intron-encoded protein. Recently, we showed that linear group II intron RNAs, which can result from hydrolytic splicing or debranching of lariat RNAs, can retrohome in eukaryotes by performing only the first step of reverse splicing, ligating their 3′ end to the downstream DNA exon. Reverse transcription then yields an intron cDNA, whose free end is linked to the upstream DNA exon by an error-prone process that yields junctions similar to those formed by non-homologous end joining (NHEJ). Here, by using Drosophila melanogaster NHEJ mutants, we show that linear intron RNA retrohoming occurs by major Lig4-dependent and minor Lig4-independent mechanisms, which appear to be related to classical and alternate NHEJ, respectively. The DNA repair polymerase θ plays a crucial role in both pathways. Surprisingly, however, mutations in Ku70, which functions in capping chromosome ends during NHEJ, have only moderate, possibly indirect effects, suggesting that both Lig4 and the alternate end-joining ligase act in some retrohoming events independently of Ku. Another potential Lig4-independent mechanism, reverse transcriptase template switching from the intron RNA to the upstream exon DNA, occurs in vitro, but gives junctions differing from the majority in vivo. Our results show that group II introns can utilize cellular NHEJ enzymes for retromobility in higher organisms, possibly exploiting mechanisms that contribute to retrotransposition and mitigate DNA damage by resident retrotransposons. Additionally, our results reveal novel activities of group II intron reverse transcriptases, with implications for retrohoming mechanisms and potential biotechnological applications
Group II Intron-Based Gene Targeting Reactions in Eukaryotes
Mobile group II introns insert site-specifically into DNA target sites by a mechanism termed retrohoming in which the excised intron RNA reverse splices into a DNA strand and is reverse transcribed by the intron-encoded protein. Retrohoming is mediated by a ribonucleoprotein particle that contains the intron-encoded protein and excised intron RNA, with target specificity determined largely by base pairing of the intron RNA to the DNA target sequence. This feature enabled the development of mobile group II introns into bacterial gene targeting vectors ("targetrons") with programmable target specificity. Thus far, however, efficient group II intron-based gene targeting reactions have not been demonstrated in eukaryotes.By using a plasmid-based Xenopus laevis oocyte microinjection assay, we show that group II intron RNPs can integrate efficiently into target DNAs in a eukaryotic nucleus, but the reaction is limited by low Mg(2+) concentrations. By supplying additional Mg(2+), site-specific integration occurs in up to 38% of plasmid target sites. The integration products isolated from X. laevis nuclei are sensitive to restriction enzymes specific for double-stranded DNA, indicating second-strand synthesis via host enzymes. We also show that group II intron RNPs containing either lariat or linear intron RNA can introduce a double-strand break into a plasmid target site, thereby stimulating homologous recombination with a co-transformed DNA fragment at frequencies up to 4.8% of target sites. Chromatinization of the target DNA inhibits both types of targeting reactions, presumably by impeding RNP access. However, by using similar RNP microinjection methods, we show efficient Mg(2+)-dependent group II intron integration into plasmid target sites in zebrafish (Danio rerio) embryos and into plasmid and chromosomal target sites in Drosophila melanogster embryos, indicating that DNA replication can mitigate effects of chromatinization.Our results provide an experimental foundation for the development of group II intron-based gene targeting methods for higher organisms
The development, implementation and evaluation of interventions to reduce workplace sitting: a qualitative systematic review and evidence-based operational framework
Background:
Prolonged sitting is associated with increased risks of cardiovascular disease, Type 2 diabetes, some
cancers, musculoskeletal disorders and premature mortality. Workplaces contribute to a large proportion of daily
sitting time, particularly among office-based workers. Interventions to reduce workplace sitting therefore represent
important public health initiatives. Previous systematic reviews suggest such interventions can be effective but have
reported wide variations. Further, there is uncertainty as to whether effectiveness in controlled trials can be replicated
when implemented outside the research setting. The aims of this review are to identify factors important for the
implementation of workplace sitting interventions and to translate these findings into a useful operational framework
to support the future implementation of such interventions.
Methods:
A qualitative systematic review was conducted. Four health and social science databases were searched for
studies set in the workplace, with office-based employees and with the primary aim of reducing workplace sitting.
Extracted data were primarily from author descriptions of interventions and their implementation. Inductive thematic
analysis and synthesis was undertaken.
Results:
Forty studies met the inclusion criteria. Nine descriptive themes were identified from which emerged three
higher-order analytical themes, which related to the
development
,
implementation
and
evaluation
of workplace sitting
interventions. Key findings inc
luded: the importance of groundi
ng interventions in theory; utilising participative approaches
during intervention development and implementation; and c
onducting comprehensive proce
ss and outcome evaluations.
There was a general under-reporting of info
rmation relating to the context within which workplace sitting interventions
were implemented, such as details of local organisation processes and structures, as well as the wider political and
economic landscape, which if present would aid the translation of knowledge into
“
real-world
”
settings.
Conclusions:
These findings provided the basis for an operational framework, which is a representation of all nine
descriptive themes and three higher-order analytical themes, to support workplace sitting intervention development,
implementation and evaluation. Once tested and refined, this framework has the potential to be incorporated into a
practical toolkit, which could be used by a range of organisations to develop, implement and evaluate their own
interventions to reduce workplace sitting time amongst staff
Acceptability and feasibility of a low-cost, theory-based and co-produced intervention to reduce workplace sitting time in desk-based university employees
BACKGROUND: Prolonged sedentary time is linked with poor health, independent of physical activity levels. Workplace sitting significantly contributes to sedentary time, but there is limited research evaluating low-cost interventions targeting reductions in workplace sitting. Current evidence supports the use of multi-modal interventions developed using participative approaches. This study aimed to explore the acceptability and feasibility of a low-cost, co-produced, multi-modal intervention to reduce workplace sitting. METHODS: The intervention was developed with eleven volunteers from a large university department in the UK using participative approaches and “brainstorming” techniques. Main components of the intervention included: emails suggesting ways to “sit less” e.g. walking and standing meetings; free reminder software to install onto computers; social media to increase awareness; workplace champions; management support; and point-of-decision prompts e.g. by lifts encouraging stair use. All staff (n = 317) were invited to take part. Seventeen participated in all aspects of the evaluation, completing pre- and post-intervention sitting logs and questionnaires. The intervention was delivered over four weeks from 7th July to 3rd August 2014. Pre- and post-intervention difference in daily workplace sitting time was presented as a mean ± standard deviation. Questionnaires were used to establish awareness of the intervention and its various elements, and to collect qualitative data regarding intervention acceptability and feasibility. RESULTS: Mean baseline sitting time of 440 min/workday was reported with a mean reduction of 26 ± 54 min/workday post-intervention (n = 17, 95 % CI = −2 to 53). All participants were aware of the intervention as a whole, although there was a range of awareness for individual elements of the intervention. The intervention was generally felt to be both acceptable and feasible. Management support was perceived to be a strength, whilst specific strategies that were encouraged, including walking and standing meetings, received mixed feedback. CONCLUSIONS: This small-scale pilot provides encouragement for the acceptability and feasibility of low-cost, multi-modal interventions to reduce workplace sitting in UK settings. Evaluation of this intervention provides useful information to support participatory approaches during intervention development and the potential for more sustainable low-cost interventions. Findings may be limited in terms of generalisability as this pilot was carried out within a health-related academic setting
- …