4 research outputs found

    Site of cochlear stimulation and its effect on electrically evoked compound action potentials using the MED-EL standard electrode array

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The standard electrode array for the MED-EL MAESTRO cochlear implant system is 31 mm in length which allows an insertion angle of approximately 720°. When fully inserted, this long electrode array is capable of stimulating the most apical region of the cochlea. No investigation has explored Electrically Evoked Compound Action Potential (ECAP) recordings in this region with a large number of subjects using a commercially available cochlear implant system. The aim of this study is to determine if certain properties of ECAP recordings vary, depending on the stimulation site in the cochlea.</p> <p>Methods</p> <p>Recordings of auditory nerve responses were conducted in 67 subjects to demonstrate the feasibility of ECAP recordings using the Auditory Nerve Response Telemetry (ART™) feature of the MED-EL MAESTRO system software. These recordings were then analyzed based on the site of cochlear stimulation defined as basal, middle and apical to determine if the amplitude, threshold and slope of the amplitude growth function and the refractory time differs depending on the region of stimulation.</p> <p>Results</p> <p>Findings show significant differences in the ECAP recordings depending on the stimulation site. Comparing the apical with the basal region, on average higher amplitudes, lower thresholds and steeper slopes of the amplitude growth function have been observed. The refractory time shows an overall dependence on cochlear region; however post-hoc tests showed no significant effect between individual regions.</p> <p>Conclusions</p> <p>Obtaining ECAP recordings is also possible in the most apical region of the cochlea. However, differences can be observed depending on the region of the cochlea stimulated. Specifically, significant higher ECAP amplitude, lower thresholds and steeper amplitude growth function slopes have been observed in the apical region. These differences could be explained by the location of the stimulating electrode with respect to the neural tissue in the cochlea, a higher density, or an increased neural survival rate of neural tissue in the apex.</p> <p>Trial registration</p> <p>The Clinical Investigation has the Competent Authority registration number DE/CA126/AP4/3332/18/05.</p

    CHEMampere: Technologies for sustainable chemical production with renewable electricity and CO2, N2, O2, and H2O

    Get PDF
    The chemical industry must become carbon neutral by 2050, meaning that process-, energy-, and product-related CO2 emissions from fossil sources are completely suppressed. This goal can only be reached by using renewable energy, secondary raw materials, or CO2 as a carbon source. The latter can be done indirectly through the bioeconomy or directly by utilizing CO2 from air or biogenic sources (integrated biorefinery). Until 2030, CO2 waste from fossil-based processes can be utilized to curb fossil CO2 emissions and reach the turning point of global fossil CO2 emissions. A technology mix consisting of recycling technologies, white biotechnology, and carbon capture and utilization (CCU) technologies is needed to achieve the goal of carbon neutrality. In this context, CHEMampere contributes to the goal of carbon neutrality with electricity-based CCU technologies producing green chemicals from CO2, N2, O2, and H2O in a decentralized manner. This is an alternative to the e-Refinery concept, which needs huge capacities of water electrolysis for a centralized CO2 conversion with green hydrogen, whose demand is expected to rise dramatically due to the decarbonization of the energy sector, which would cause a conflict of use between chemistry and energy. Here, CHEMampere's core reactor technologies, that is, electrolyzers, plasma reactors, and ohmic resistance heating of catalysts, are described, and their technical maturity is evaluated for the CHEMampere platform chemicals NH3, NOx, O3, H2O2, H2, CO, and CxHyOz products such as formic acid or methanol. Downstream processing of these chemicals is also addressed by CHEMampere, but it is not discussed here
    corecore