23 research outputs found

    Optical Scattering Lengths in Large Liquid-Scintillator Neutrino Detectors

    Full text link
    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents PXE, LAB, and Dodecane which are under discussion for next-generation experiments like SNO+, Hanohano, or LENA. Results comprise the wavelength range from 415 to 440nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.Comment: 9 pages, 3 figures, accepted for publication by Rev. Scient. Instr

    Low-energy Neutrino Astronomy in LENA

    Get PDF
    LENA (Low Energy Neutrino Astronomy) is a proposed next-generation neutrino detector based on 50 kilotons of liquid scintillator. The low detection threshold, good energy resolution and excellent background rejection inherent to the liquid-scintillator detectors make LENA a versatile observatory for low-energy neutrinos from astrophysical and terrestrial sources. In the framework of the European LAGUNA-LBNO design study, LENA is also considered as far detector for a very-long baseline neutrino beam from CERN to Pyhasalmi ¹ (Finland). The present contribution gives an overview LENA’s broad research program, highlighting the unique capabilities of liquid scintillator for the detection of low-energy neutrinos from astrophysical sources. In particular, it will focus on the precision measurement of the solar neutrino spectrum: The search for time modulations in the 7Be neutrino flux, the determination of the electron neutrino survival probability in the low-energy region of the 8B spectrum and the favorable detection conditions for neutrinos from the CNO fusion cycle.peerReviewe

    Neutrino Flavor Sensitivity of Large Liquid Scintillator Detectors

    Get PDF
    Scintillator detectors are known for their good light yield, energy resolution, timing characteristics and pulse shape discrimination capabilities. These features make the next-generation liquid scintillation detector LENA[1] (Low Energy Neutrino Astronomy) the optimal choice for a wide range of astro-particle topics including supernova-, solar-, and geo neutrinos. In addition to the excellent calorimetric and timing properties, scintillartor detectors (LSDs) are also capable of topology reconstruction sufficient to discriminate with adequate efficiency between electron and muon neutrino induced charge current events and neutral current events in the GeV energy range. This feature makes LENA a competitive tool for the determination of the mass hierarchy (MH) with long baseline neutrino beams such as the proposed CN2PY beam (2288 km). This work summarizes the status of the current work on track reconstruction schemes and discusses the sensitivity limit for the neutrino mass hierarchy measurement with LENA.peerReviewe
    corecore