6 research outputs found

    Randomized Controlled Clinical Trial of Nanostructured Carbonated Hydroxyapatite for Alveolar Bone Repair

    No full text
    The properties of the biodegradation of bone substitutes in the dental socket after extraction is one of the goals of regenerative medicine. This double-blind, randomized, controlled clinical trial aimed to compare the effects of a new bioabsorbable nanostructured carbonated hydroxyapatite (CHA) with a commercially available bovine xenograft (Bio-Oss®) and clot (control group) in alveolar preservation. Thirty participants who required tooth extraction and implant placement were enrolled in this study. After 90 days, a sample of the grafted area was obtained for histological and histomorphometric evaluation and an implant was installed at the site. All surgical procedures were successfully carried out without complications and none of the patients were excluded. The samples revealed a statistically significant increase of new bone formation (NFB) in the CHA group compared with Bio-Oss® after 90 days from surgery (p < 0.05). However, the clot group presented no differences of NFB compared to CHA and Bio-Oss®. The CHA group presented less amount of reminiscent biomaterial compared to Bio-Oss®. Both biomaterials were considered osteoconductors, easy to handle, biocompatible, and suitable for alveolar filling. Nanostructured carbonated hydroxyapatite spheres promoted a higher biodegradation rate and is a promising biomaterial for alveolar socket preservation before implant treatment

    Biomimetic Mineralization on 3D Printed PLA Scaffolds: On the Response of Human Primary Osteoblasts Spheroids and In Vivo Implantation

    No full text
    This study aimed to assess the response of 3D printed polylactic acid (PLA) scaffolds biomimetically coated with apatite on human primary osteoblast (HOb) spheroids and evaluate the biological response to its association with Bone Morphogenetic Protein 2 (rhBMP-2) in rat calvaria. PLA scaffolds were produced via 3D printing, soaked in simulated body fluid (SBF) solution to promote apatite deposition, and characterized by physical-chemical, morphological, and mechanical properties. PLA-CaP scaffolds with interconnected porous and mechanical properties suitable for bone repairing were produced with reproducibility. The in vitro biological response was assessed with human primary osteoblast spheroids. Increased cell adhesion and the rise of in vitro release of growth factors (Platelet-Derived Growth Factor (PDGF), Basic Fibroblast Growth Factor (bFGF), Vascular Endothelial Growth Factor (VEGF) was observed for PLA-CaP scaffolds, when pre-treated with fetal bovine serum (FBS). This pre-treatment with FBS was done in a way to enhance the adsorption of serum proteins, increasing the number of bioactive sites on the surface of scaffolds, and to partially mimic in vivo interactions. The in vivo analysis was conducted through the implantation of 3D printed PLA scaffolds either alone, coated with apatite (PLA-CaP) or PLA-CaP loaded with rhBMP-2 on critical-sized defects (8 mm) of rat calvaria. PLA-CaP+rhBMP2 presented higher values of newly formed bone (NFB) than other groups at all in vivo experimental periods (p < 0.05), attaining 44.85% of NFB after six months. These findings indicated two new potential candidates as alternatives to autogenous bone grafts for long-term treatment: (i) 3D-printed PLA-CaP scaffold associated with spheroids, since it can reduce the time of repair in situ by expression of biomolecules and growth factors; and (ii) 3D-printed PLA-CaP functionalized rhBMP2 scaffold, a biocompatible, bioactive biomaterial, with osteoconductivity and osteoinductivity

    In vivo evaluation of the biocompatibility and biodegradation of a new denatured plasma membrane combined with liquid PRF (Alb-PRF).

    No full text
    Guided bone regeneration (GBR) is a process that involves the regeneration of bone defects through the application of occlusive membranes that mechanically exclude the population of non-osteogenic cells from the surrounding soft tissue. Interestingly, platelet-rich fibrin (PRF) has previously been proposed as an autologous GBR membrane despite its short-term resorption period of 2-3聽weeks. Recent clinical observations have demonstrated that, by heating a liquid platelet-poor plasma (PPP) layer and mixing the cell-rich buffy coat zone, the resorption properties of heated albumin gel with liquid-PRF (Alb-PRF) can be significantly improved. The aim of this study was to evaluate the inflammatory reaction, biocompatibility, and extended degradation properties of a new autologous Alb-PRF membrane in comparison to commonly utilized standard PRF after nude mice implantation, according to ISO 10993-6/2016. Two standard preparations of PRF (L-PRF and H-PRF) were compared to novel Alb-PRF following subcutaneous implantation at 7, 14, and 21聽days. All groups demonstrated excellent biocompatibility owing to their autologous sources. However, it is worth noting that, while both L-PRF and H-PRF membranes demonstrated significant or complete resorption by 21聽days, the Alb-PRF membrane remained volume-stable throughout the duration of the study. This study demonstrates-for the first time, to the best of our knowledge-a marked improvement in the membrane stability of Alb-PRF. This indicates its future potential for use as a biological barrier membrane for GBR procedures with a long-lasting half-life, or as a biological filler material in esthetic medicine applications. Thus, further studies are warranted to explore future clinical applications in various fields of medicine
    corecore